Disposable baby diapers — Specification
Compliance with this standard does not, of itself confer immunity from legal obligations

A Uganda Standard does not purport to include all necessary provisions of a contract. Users are responsible for its correct application

© UNBS 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying and microfilm, without prior written permission from UNBS.

Requests for permission to reproduce this document should be addressed to

The Executive Director
Uganda National Bureau of Standards
P.O. Box 6329
Kampala
Uganda
Tel: 256 414 505 995
Fax: 256 414 286 123
E-mail: unbs@infocom.co.ug
Web: www.unbs.go.ug
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>v</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 Classification</td>
<td>2</td>
</tr>
<tr>
<td>5 Requirements</td>
<td>2</td>
</tr>
<tr>
<td>5.1 General Requirements</td>
<td>2</td>
</tr>
<tr>
<td>5.2 Materials</td>
<td>2</td>
</tr>
<tr>
<td>5.3 Other physical characteristics</td>
<td>3</td>
</tr>
<tr>
<td>5.4 Microbiological requirements</td>
<td>3</td>
</tr>
<tr>
<td>6 Packaging and marking</td>
<td>4</td>
</tr>
<tr>
<td>6.1 Packaging and/or packaging</td>
<td>4</td>
</tr>
<tr>
<td>6.2 Marking</td>
<td>4</td>
</tr>
<tr>
<td>7 Testing</td>
<td>4</td>
</tr>
<tr>
<td>8 Proof of compliance</td>
<td>4</td>
</tr>
<tr>
<td>Annex A (normative) Determination of absorbency rate</td>
<td>5</td>
</tr>
<tr>
<td>A.1 Scope</td>
<td>5</td>
</tr>
<tr>
<td>A.2 Safety</td>
<td>5</td>
</tr>
<tr>
<td>A.3 Principles</td>
<td>5</td>
</tr>
<tr>
<td>A.4 Reagents</td>
<td>5</td>
</tr>
<tr>
<td>A.5 Equipment and Materials</td>
<td>5</td>
</tr>
<tr>
<td>A.6 Procedure</td>
<td>5</td>
</tr>
<tr>
<td>A.6.1 Prepare 0.9 % saline by dissolving 45 g of sodium chloride into 4955 mL of distilled or deionized water. Blend the saline thoroughly.</td>
<td>5</td>
</tr>
<tr>
<td>A.6.2 Weigh out one 1 g of loose SAP.</td>
<td>5</td>
</tr>
<tr>
<td>A.6.3 Pour the SAP into an Aluminium tin and distribute evenly over the bottom of the tin. Measure 30 mL of saline into the graduated cylinder.</td>
<td>6</td>
</tr>
<tr>
<td>Annex B (informative) Total absorptive capacity for baby diapers</td>
<td>7</td>
</tr>
<tr>
<td>B.1 Scope</td>
<td>7</td>
</tr>
<tr>
<td>B.2 Safety</td>
<td>7</td>
</tr>
<tr>
<td>B.3 Equipment and Materials</td>
<td>7</td>
</tr>
<tr>
<td>B.4 Procedure</td>
<td>7</td>
</tr>
<tr>
<td>B.5 Calculation</td>
<td>8</td>
</tr>
<tr>
<td>Annex C (normative) Rewet and Acquisition Time Under Load for disposable baby diapers</td>
<td>9</td>
</tr>
<tr>
<td>C.1 Scope</td>
<td>9</td>
</tr>
<tr>
<td>C.2 Safety</td>
<td>9</td>
</tr>
<tr>
<td>C.3 Equipment and materials</td>
<td>9</td>
</tr>
<tr>
<td>C.4 Procedure</td>
<td>9</td>
</tr>
<tr>
<td>C.5 Primary test</td>
<td>10</td>
</tr>
<tr>
<td>C.6 Secondary test</td>
<td>10</td>
</tr>
<tr>
<td>C.7 Tertiary test</td>
<td>10</td>
</tr>
<tr>
<td>C.8 Calculation</td>
<td>11</td>
</tr>
<tr>
<td>Annex D (normative) Microbiological examination</td>
<td>12</td>
</tr>
<tr>
<td>D.1 Apparatus and equipment</td>
<td>12</td>
</tr>
<tr>
<td>D.2 Media and reagents</td>
<td>12</td>
</tr>
<tr>
<td>D.2.1 General</td>
<td>12</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>D.2.2</td>
<td>Bacteriological peptone</td>
</tr>
<tr>
<td>D.2.3</td>
<td>Plate count agar</td>
</tr>
<tr>
<td>D.2.4</td>
<td>Neutral red-bile salt peptone glucose medium</td>
</tr>
<tr>
<td>D.2.5</td>
<td>Fluid soybean-casein digest medium</td>
</tr>
<tr>
<td>D.2.6</td>
<td>Cetrimide agar medium</td>
</tr>
<tr>
<td>D.2.7</td>
<td>Pseudomonas agar medium for detection of fluorescein</td>
</tr>
<tr>
<td>D.2.8</td>
<td>Pseudomonas agar medium for detection of pyocyanin</td>
</tr>
<tr>
<td>D.3</td>
<td>Preparation of test suspension</td>
</tr>
<tr>
<td>D.4</td>
<td>Procedure</td>
</tr>
<tr>
<td>D.4.1</td>
<td>Total viable bacterial count</td>
</tr>
<tr>
<td>D.4.2</td>
<td>Examination for the presence of Enterobacteriaceae</td>
</tr>
<tr>
<td>D.4.3</td>
<td>Examination for the presence of Staphylococcus aureus</td>
</tr>
<tr>
<td>D.4.4</td>
<td>Examination for the presence of Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Bibliography</td>
<td>16</td>
</tr>
</tbody>
</table>
Foreword

Uganda National Bureau of Standards (UNBS) is a parastatal under the Ministry of Tourism, Trade and Industry established under Cap 327, of the Laws of Uganda. UNBS is mandated to co-ordinate the elaboration of standards and is

(a) a member of International Organisation for Standardisation (ISO) and

(b) a contact point for the WHO/FAO Codex Alimentarius Commission on Food Standards, and

(c) the National Enquiry Point on TBT/SPS Agreements of the World Trade Organisation (WTO).

The work of preparing Uganda Standards is carried out through Technical Committees. A Technical Committee is established to deliberate on standards in a given field or area and consists of representatives of consumers, traders, academicians, manufacturers, government and other stakeholders.

Draft Uganda Standards adopted by the Technical Committee are widely circulated to stakeholders and the general public for comments. The committee reviews the comments before recommending the draft standards for approval and declaration as Uganda Standards by the National Standards Council.

Committee membership

The following organisations were represented on the Technical Committee for Textiles and Leather Products’ Standards, UNBS/TC 7, during the development of this standard:

- Johnnie S.W. Setyabula (Expert in Textile Manufacture)
- Kyambogo University
- Ministry of Tourism Trade and Industry (MTTI)
- Nina Interiors Limited
- Phenix Logistics Uganda Limited
- Southern Range Nyanza Limited
- Textile Development Agency (TEXDA)
- Uganda Consumer Protection Association (CONSENT)
- Uganda National Bureau of Standards (UNBS)
Introduction

Diapers are personal hygiene products engineered to absorb and contain urine and faeces of a baby. They are designed to keep the skin dry by isolating these wastes from clothing, bedding and the surrounding environment. They are placed and fastened around the baby’s legs and bottom to form a leak proof seal, preventing contamination of the baby’s clothes. The products need to provide maximum comfort to the baby and maximum convenience to the carer.

A disposable diaper consists of an absorbent pad sandwiched between two sheets of nonwoven fabric. The pad is specially designed to absorb and retain body fluids, and the non-woven fabric gives the diaper a comfortable shape and helps prevent leakage. These diapers are made by a multi-step process in which the absorbent pad is first vacuum-formed, then attached to a permeable top sheet and impermeable bottom sheet. The components are sealed together by application of heat or ultrasonic vibrations. Elastic fibres are attached to the sheets to gather the edges of the diaper into the proper shape so it fits snugly around a baby’s legs and crotch. When properly fitted, the disposable diaper will retain body fluids which pass through the permeable top sheet and are absorbed into the pad.

The baby diapers are generally available in four sizes, small, medium, large and extra large, with an overall snug fitting. Typical functions of baby diapers include:

- absorb body fluids;
- retain body fluid inside the absorbent core;
- isolate wetness from the baby’s skin; and
- isolate other excretion from baby’s environment (cloth, bed etc).

![Figure 1 — Baby diaper](image)
Disposable baby diapers — Specification

1 Scope

This Final Draft Uganda standard prescribes the requirements and test methods for disposable baby diapers.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EAS 217-1, Methods for the microbiological examination of foods — Part 1: General procedures and technique
EAS 240, Conditioning for the testing of textiles
EAS 261, Method for determination of pH value of aqueous extracts of textile materials

3 Terms and definitions

For the purposes of this standard, the following terms and definitions shall apply.

3.1 disposable baby diapers
disposable hygienic pad for babies having capability to absorb urine and prevent stool and fluid from leaking

3.2 Super Absorbent Polymer (SAP)
granular cross-linked sodium polyacrylates material used as absorbent core with improved retention capacity in disposable diapers

3.3 Acquisition/Distribution Layer (ADL)
component of an absorbent hygiene product through which the fluid is transferred and distributed within the absorbent core

3.4 top sheet (coverstock)
the outer layer of an absorbent hygiene product that is in direct intimate contact with the user’s skin. It allows instant transfer of the fluid from the point of contact to the inside of the product.
3.5
back sheet
layer of an absorbent hygiene product made of either polymer film or nonwoven film designed to prevent wetness transfer from the wearer to their bed or clothes

3.6
acquisition time under load
time required for the diaper to fully absorb a known amount of test fluid under load

4 Classification

Diapers shall be classified according to the weight of the baby it is meant for as in Table 1.

<table>
<thead>
<tr>
<th>Category (informative)</th>
<th>Baby weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Up to 6</td>
</tr>
<tr>
<td>Medium</td>
<td>6.1 – 9.0</td>
</tr>
<tr>
<td>Large</td>
<td>9.1 – 15</td>
</tr>
<tr>
<td>Extra large</td>
<td>Above 15</td>
</tr>
</tbody>
</table>

NOTE 1 The diapers are classified according to the baby weight and not according to category.

NOTE 2 The upper limit of the weight range shown on the pack is used to determine the baby weight category.

NOTE 3 The size of the category is consistent with the standard dimensions as required by the market.

5 Requirements

5.1 General Requirements

Baby diapers shall be manufactured, stored and packed under hygienic conditions to minimise contamination of the product and shall be disposable. The diapers shall present a neat, well finished appearance and shall be free of all imperfections and/or defects which might affect appearance, normal life, or usage.

5.2 Materials

The materials used for making the diapers shall be clean, bacteria free, and highly absorbent. They shall not harm the baby’s skin and should not have any unpleasant odour when wet or dry.

5.2.1 The absorbent core shall:

a) consist of cellulose fibres and superabsorbent polymer and shall be contoured for better fit between the legs. It shall have a comfortable feel and shall ensure complete dryness and prevent growth of bacteria;

b) be clean, free from harmful foreign materials, lumps, splits, holes, and protruding points when visually examined; and

c) be arranged in a manner that will speed up the absorption of urine and keep it away from the baby’s skin.
5.2.2 The top sheet (the layer which contacts the baby’s skin) shall:

a) be of material capable of allowing fluid to pass readily through to the next layer and shall resist moisture return to the skin. It shall have no harmful effects;

b) cover the absorbent core completely and prevent the core from reaching the baby’s skin or clothes under normal handling; and

c) have high degree of softness and shall cause no irritation to the skin.

5.2.3 The back sheet (outer cover)

a) shall be moisture impervious and shall prevent direct contact of the absorbent core with the baby’s clothing and there shall be no liquid leakage out of the diapers; and

b) should be breathable and comfortable for the baby.

5.2.4 There shall be a device for ensuring a good fit of the diapers on the baby’s femurs and to prevent leakage at the femurs without causing rubefacient effects.

5.2.5 There shall be a suitable device for fastening the diaper at the waist for secure use without causing rubefacient effects.

5.2.6 Adhesive used shall prevent shifting of the absorbent core.

5.2.7 Each material component of the diaper should be bonded to the adjacent component to enhance strength and prevent shifting of the absorbent core.

5.3 Other physical characteristics

Other physical characteristics of the diapers shall comply with the requirements given in Table 2.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
<th>Extra large</th>
<th>Test methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of absorbency, s, (max)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>Annex A</td>
</tr>
<tr>
<td>Absorptive capacity, g min</td>
<td>250</td>
<td>350</td>
<td>450</td>
<td>500</td>
<td>Annex B</td>
</tr>
<tr>
<td>Rewet under load,g (max)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Annex C</td>
</tr>
<tr>
<td>Acquisition time under load, s (max)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>Annex C</td>
</tr>
<tr>
<td>pH</td>
<td>6 – 8.5</td>
<td>6 – 8.5</td>
<td>6 – 8.5</td>
<td>6 – 8.5</td>
<td>EAS 261</td>
</tr>
</tbody>
</table>

NOTE Re-wet test: the purpose of this test is to examine the ability of diapers’ topsheet to resist transportation back on to the skin of a liquid which has already penetrated the topsheet. The rewet under load simulates the effect of a baby sitting on a wet diaper. The lesser the rewet value, the better the performance of the diaper.

5.4 Microbiological requirements

The microbiological limits shall be as defined below;

a) the total viable bacterial count, when determined in accordance with D.4.1 shall not exceed 1000 per diaper; and

b) when tested in accordance with D.4.4.1, D.4.4.2 and D.4.4.3, disposable diapers shall be free from *Enterobacteriaceae*, *Staphylococcus aureus*, and *Pseudomonas aeruginosa*.

© UNBS 2011 – All rights reserved
6 Packaging and marking

6.1 Packing and/or packaging

Diapers shall be packed in a suitable package that shall protect them from any form of contamination and damage. Packaging for shipment shall be in accordance with the manufacturer's standard practice and in a manner readily accepted by the market. Within the shipping carton, units shall be packed in manner designed to minimize damage during shipment due to rough or improper handling.

6.2 Marking

The diaper packs shall be marked with legible and indelible pre-printed marking or a securely affixed and durable label bearing the following information:

a) name of contents;
b) name and address of the manufacturer;
c) number of diapers;
d) size or dimension of diapers;
e) weight of baby that the diapers is meant for;
f) instruction for storage and disposal;
g) date of manufacture and expiry;
h) batch/lot number;
i) country of origin; and
j) any perfume, lotion and powder added on the topsheet shall be declared.

7 Testing

Testing shall be done by, or at the direction of, the receiving agency and the cost of the testing shall be borne by the supplier. Tests shall be performed on products from shipments to ordering agencies. In the event that products tested fail to meet or exceed all conditions and requirements of this specification, the product shall be destroyed at the cost of the supplier.

8 Proof of compliance

The manufacturer or the supplier shall bear the burden of proof of compliance with this specification.
Annex A
(normative)

Determination of absorbency rate

A.1 Scope
This method describes the procedure for measuring the absorbency rate of loose Super Absorbent Particles (SAP).

A.2 Safety
Read the material safety data sheets for all chemicals used in this procedure. Exposure to low levels of airborne SAP dust may result in lung irritation. SAP is non-irritating by skin contact and is essentially non-irritating to the eyes. However, if eye contact occurs, it is recommended that the eyes be flushed with running water for at least 15 min.

When testing experimental and competitive SAP with unknown levels of residual monomer, residual solvents, or residual crosslinkers, it is recommended that neoprene gloves be worn when handling the hydrated SAP.

A.3 Principles
The absorbency rate is measured by observing the time required for complete absorbency of a given amount of fluid.

A.4 Reagents
0.9 % NaCl saline prepared with distilled or deionized water

A.5 Equipment and Materials
A.5.1 Analytical balance accurate to 0.0001 g (with cover)
A.5.2 Aluminium tins (Fisher brand Aluminium weighing dish #08-732 of 57 mm in diameter or equivalent)
A.5.3 Stopwatch
A.5.4 50 mL graduated cylinder

A.6 Procedure
A.6.1 Prepare 0.9 % saline by dissolving 45 g of sodium chloride into 4955 mL of distilled or deionized water. Blend the saline thoroughly.

A.6.2 Weigh out one 1 g of loose SAP.
A.6.3 Pour the SAP into an Aluminium tin and distribute evenly over the bottom of the tin. Measure 30 mL of saline into the graduated cylinder.

A.6.4 Pour the saline into the aluminium tin containing the SAP and start the stopwatch as soon as the first solution touches the SAP.

NOTE. Give the initial mix a quick swirl to redistribute the saline and SAP evenly. Stop the stopwatch as soon as all of the solution is completely absorbed.

A.6.5 Record the time (in seconds) required for the SAP to absorb all of the saline solution.

A.6.6 Repeat the test twice and take the average of the three tests for the final result.
Annex B
(informative)

Total absorptive capacity for baby diapers

B.1 Scope
This method describes the procedure for determining the total absorptive capacity of baby diapers.

B.2 Safety
Read the material safety data sheets for all chemicals used in this procedure.

B.3 Equipment and Materials

B.3.1 Two ring stands with crossbar and clamps
B.3.2 Large plastic pan or tub (large enough to hold saline and articles to be tested)
B.3.3 Small plastic pan or tub (small enough to be used on a balance, but large enough to contain the wet article)
B.3.4 Lab balance accurate to the nearest 0.01 (1 000 gram capacity)
B.3.5 Timer
B.3.6 0.9 % NaCl saline prepared with distilled or deionized water
B.3.7 Food dye or equivalent

B.4 Procedure

B.4.1 Prepare the 0.9 % saline by dissolving 45 g of sodium chloride into 4955 mL of distilled or deionized water. Blend the saline solution thoroughly.
B.4.2 Record the dry weight (grams) of the article.
B.4.3 Set the timer for 30 min.
B.4.4 Place the dry article in a large pan or tub filled with enough saline to completely submerge the article.
B.4.5 Start the timer.
B.4.6 After 30 min have passed, remove the wet article and hang it over the crossbar (in the cross machine direction or at the bi-fold). Set the timer for 10 min.
B.4.7 Place the small plastic pan or tub on the laboratory balance and zero the balance.
B.4.8 After 10 min have elapsed, remove the hanging article and place it into the small pan.
B.4.9 Weigh the small pan and hydrated article together. Record the wet weight.

B.5 Calculation

Total Absorptive Capacity (grams) = wet weight – dry weight
Annex C
(normative)

Rewet and Acquisition Time Under Load for disposable baby diapers

C.1 Scope
This method describes the procedure for measuring the Rewet Under Load (RUL) and Acquisition Time Under Load (ATUL) for disposable baby diapers.

C.2 Safety
Read the material safety data sheets for all chemicals used in this procedure.

C.3 Equipment and materials
C.3.1 Stainless steel dosing weight (Figure C.1)
C.3.2 0.7 psi rewet weight (Figure C.2)
C.3.3 Lab balance accurate to the nearest 0.01 g
C.3.4 Filter paper grade #4 (diameter 90 mm, VWR 415 or equivalent)
C.3.5 7 mL/sec separatory funnel
C.3.6 100 mL beaker or equivalent
C.3.7 Timer
C.3.8 Stopwatch
C.3.9 Ruler
C.3.10 Permanent marker
C.3.11 0.9 % NaCl saline prepared with distilled or deionized water
C.3.12 Food dye or equivalent

C.4 Procedure
C.4.1 Prepare 0.9 % saline by dissolving 45 g of sodium chloride into 4955 mL of distilled or deionized water. Blend the saline thoroughly.

C.4.2 Add a few drops of food dye (or equivalent) to the saline and blend thoroughly.

NOTE Only use enough dye to allow for a visual indication of fluid flow and wicking.
C.5 Primary test

C.5.1 Weigh and record the total diaper weight of all samples.

C.5.2 Find and mark (with permanent marker) the dosing zone, which is located 5 cm toward the front edge of the product, from the centre (diaper chassis, not core).

C.5.3 Weigh 20 g, 30 g, and 40 g stacks of Whatman filter paper to the nearest 0.01 g and record the weight as the dry filter paper weight.

C.5.4 With the nonwoven coversheet side up, cup the diaper in a “U” shape.

C.5.5 Measure 80 mL of the dyed saline solution and pour it into the separatory funnel.

C.5.6 Place the dosing weight and separatory funnel over the insult zone.

C.5.7 Pour the saline into the dosing weight, being certain the saline does not overfill the dosing ring. Start the stopwatch as soon as the saline comes in contact with the surface of the diaper. Immediately after starting the stopwatch, start a ten-minute timer.

C.5.8 Stop the stopwatch once all of the saline has entered the diaper core and record this time (seconds) as the primary ATUL.

C.5.9 Leave the dosing weight on the diaper for 10 min.

NOTE This ten-minute interval should start at the onset of the acquisition test, when the saline is first poured into the dosing weight.

C.5.10 After 10 min, lift the dosing ring and place the stack of 20 filter papers on the diaper (nonwoven coversheet side), centred on the marked dosing zone. Set the 0.7 psi rewet weight on top of the filter paper stack and keep it there for 2 min.

C.5.11 After 2 min have elapsed, remove the 0.7 psi rewet weight and weigh the filter papers. Record the weight of the filter papers as the wet weight.

C.5.12 Subtract the dry weight of the first filter paper stack from the wet weight of the first filter paper stack and record the difference as the primary RUL.

C.6 Secondary test

C.6.1 Repeat steps 7 – 11. The ATUL determined in step 10 is recorded as the secondary ATUL.

C.6.2 Repeat steps 12 – 14 using the 30 g stack of filter papers.

C.6.3 Subtract the dry weight of the second filter paper stack from the wet weight of the second filter paper stack and record the difference as the secondary RUL.

C.7 Tertiary test

C.7.1 Repeat steps 7 – 11. The ATUL determined in step 10 is recorded as the tertiary ATUL.

C.7.2 Repeat steps 12 – 14 using the 40 g stack of filter papers.

C.7.3 Subtract the dry weight of the third filter paper stack from the wet weight of the third filter paper stack and record the difference as the tertiary RUL.
C.8 Calculation

C.8.1 \[\text{RUL (g)} = \text{wet weight of filter papers (g)} - \text{dry weight of filter papers (g)} \]

C.8.2 The ATUL is measured in seconds and is reported to the nearest 0.1 sec.

Figure C.1 — Stainless Steel Dosing Ring and Rewet Weight Descriptions

Stainless Steel Dosing Ring Description
- Total Weight: 316.65 g
- Total Height: 4.20 in
- Inside Diameter: 1.87 in
- Outside Diameter (top): 2.00 in
- Outside Diameter (bottom): 2.12 in

Circular Weights
- Weight of 1: 551.50 g
- Outside Diameter: 4.20 in
- Inside Diameter: 2.03 in
- Height: 0.43 in

Note: 3 circular weights are used during this test

Rewet Weight Description
- 2.5 Kg circular weight
- 0.7 psi
- 8 cm diameter
Annex D
(normative)

Microbiological examination

D.1 Apparatus and equipment

Use apparatus and equipment complying with the relevant requirements of EAS 217-1.

D.2 Media and reagents

D.2.1 General

Ensure compliance with the general requirements for the ingredients and for the preparation of media and reagents given in EAS 217-1.

D.2.2 Bacteriological peptone

Peptone 10 g
Disodium phosphate dodecahydrate 1 g
Sodium chloride 5 g
Mono-potassium phosphate 1.5 g

Dissolve the ingredients in distilled water and make up to 1 L. Adjust the pH value to be 7.0 ± 0.1 after sterilization. Dispense 300 mL volumes into flasks of capacity 500 mL and sterilize by autoclaving at 121 °C ± 2 °C for 20 min.

D.2.3 Plate count agar

Agar 15 g
Glucose 1 g
Tryptone 5 g
Yeast extract 2.5 g

Dissolve the ingredients in distilled water, made up to 1 litre, and adjust the pH value to 7.2 ± 0.2. Dispense 15 mL volumes into bottles and sterilize by autoclaving at 121 °C ± 2 °C for 20 min.

D.2.4 Neutral red-bile salt peptone glucose medium

Peptone 20 g
Glucose 10 g
Bile salts No. 3 1.5 g
Sodium chloride
Neutral red
Crystal violet

Dissolve the ingredients in 400 mL of distilled water and make up to 500 mL boiling to aid solution. Adjust the pH value to 7.4 and filter to a clear solution. Dispense 10 mL volumes into bottles each containing a Durham tube and sterilize by autoclaving at 121 °C ± 2 °C for 20 min.

D.2.5 Fluid soybean-casein digest medium

Pancreatic digest of casein 17 g
Papaic digest of soybean meal 3 g
Sodium chloride 5 g
Dibasic potassium phosphate 2.5 g
Dextrose 2.5 g

Dissolve the ingredients in distilled water and make up to 1 L, warming slightly to aid solution. Cool the solution to room temperature and adjust the pH value to be 7.3 ± 0.2 after sterilization. Filter to clarify (if necessary), dispense into suitable containers, and sterilize by autoclaving at 121 °C ± 2 °C for 20 min.

D.2.6 Cetrimide agar medium

Pancreatic digest of gelatine 20 g
Magnesium chloride 1.4 g
Potassium sulphate 10 g
Agar 13.6 g
Cetyl trimethylammonium bromide (Cetrimide) 0.3 g
Glycerine 10 mL

Dissolve all the solid ingredients in distilled water, make up to 1 L, and then add the glycerine. Heat, agitating frequently, and boil for 1 min. Adjust the pH value to be 7.2 ± 0.2 after sterilization. Dispense into suitable containers and sterilize by autoclaving at 121 °C ± 2 °C for 20 min.

D.2.7 Pseudomonas agar medium for detection of fluorescein

Pancreatic digest of casein 10 g
Peptic digest of animal tissue 10 g
Anhydrous dibasic potassium phosphate 1.5 g
Magnesium sulphate (MgSO$_4$.7H$_2$O) 1.5 g
Glycerine 10 mL
Agar 15 g
Dissolve all the solid ingredients in distilled water, make up to 1 L, and then add the glycerine. Heat, agitating frequently, and boil for 1 min. Adjust the pH value to be 7.2 ± 0.2 after sterilization. Dispense into suitable containers and sterilize by autoclaving at $121 \, ^\circ C \pm 2 \, ^\circ C$ for 20 min.

D.2.8 *Pseudomonas agar* medium for detection of pyocyanin

- Pancreatic digest of casein: 20 g
- Anhydrous magnesium chloride: 1.4 g
- Anhydrous potassium sulphate: 10 g
- Agar: 15 g
- Glycerine: 10 mL

Dissolve all the solid ingredients in distilled water, make up to 1 L, and then add the glycerine. Heat, agitating frequently, and boil for 1 min. Adjust the pH value to be 7.2 ± 0.2 after sterilization. Dispense into suitable containers and sterilize by autoclaving at $121 \, ^\circ C \pm 2 \, ^\circ C$ for 20 min.

D.3 Preparation of test suspension

Transfer 300 mL of the sterile solution of bacteriological peptone (D.2.2) to a sterile wide-mouthed jar of capacity not less than 1 L and not more than 2 L. The jar shall have a mouth of diameter not less than 150 mm and not more than 250 mm, and is fitted with a hermetically closing glass or metal-and-glass lid. Aseptically place the diaper under test in the solution in the jar, fit the lid, agitate the contents of the jar for 2 min and then allow the jar to stand for 10 min. Repeat this agitating and standing procedure twice more. Aseptically remove about 100 mL of the test suspension for testing as described in D.4 below.

D.4 Procedure

D.4.1 Total viable bacterial count

Into each of three sterile petri dishes aseptically pipette a 1 mL portion of the test suspension. To each dish, add 15 mL of freshly melted plate count agar (D.2.3) that has been cooled to 45 °C, and mix well. Incubate, count and calculate the total count as described in EAS 217-2.

D.4.2 Examination for the presence of *Enterobacteriaceae*

Aseptically add 10 mL of the test suspension to a bottle that contains neutral red-bile salt peptone glucose medium (D.2.4). Incubate the bottle for 24 h to 36 h at $37 \, ^\circ C \pm 0.5^\circ C$ and examine for the presence of *Enterobacteriaceae* as evidenced by the formation of acid and gas.

D.4.3 Examination for the presence of *Staphylococcus aureus*

Use the media, reagents and procedure described in EAS 217-5 to examine the test suspension (see D.3). As a control, pipette 0.1 mL of a 1:1000 dilution of an 18 h to 24 h culture of *Staphylococcus aureus* SATCC Sta 10 into *Staphylococcus* medium and proceed as with the test suspension.

D.4.4 Examination for the presence of *Pseudomonas aeruginosa*

D.4.4.1 Aseptically pipette 10 mL of the test suspension into 90 mL of fluid soybean-casein digest medium (D.2.5) and mix well. Incubate for 24 h at 30 °C to 35 °C. By means of an inoculating loop transfer a portion from the 24 h incubated sample tube of fluid soybean-casein digest medium to the dry surface of Petri dishes each containing approximately 20 mL of Cetrimide agar medium (D.2.6). Incubate at 30 °C to 35 °C...
and examine after 24h, and again after 48 h incubation, for suspect colonies, bearing in mind that in general greenish fluorescent colonies are typical of *Pseudomonas aureginosa* and that in its presence a gram stain examined microscopically will reveal gram-negative slender rod-shaped cells.

D.4.4.2 As a control, add 0.1 mL of a 1:1 000 dilution of an 18 h to 24 h culture of *Pseudomonas aeruginosa* SATCC Pse 11, mL to 100 mL of fluid soybean-casein digest medium (D.2.5), and proceed as with the test suspension.

D.4.4.3 If none of the colonies obtained from the test suspension conforms to the description given in (D.4.4.1) above and the control culture has been satisfactorily recovered, deem the test sample to be free from *Pseudomonas aeruginosa*.

D.4.4.4 If colonies conforming to the description given in (D.4.4.1) above are found, streak representative suspect colonies from the Cetrimide agar onto the surfaces of *Pseudomonas agar* medium for the detection of florescein (D.2.7) and *Pseudomonas agar* medium for the detection of pyocyanin (D.2.8) to obtain isolated colonies. Cover and invert the Petri dishes and incubate at 30 °C – 35 °C for at least three days. Examine the streaked surfaces under ultraviolet light for suspect colonies, as described in Table D.1.

Table D.1 — Description of colonies

<table>
<thead>
<tr>
<th>Medium</th>
<th>Description of colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas agar for the detection of fluorescein</td>
<td>Generally colourless to yellowish</td>
</tr>
<tr>
<td></td>
<td>Yellowish fluorescence in ultra violet light</td>
</tr>
<tr>
<td>Pseudomonas agar for the detection of pyocyanin</td>
<td>Generally greenish. Blue fluorescence in ultraviolet light</td>
</tr>
</tbody>
</table>

If any further doubt exists as to the identity of the colonies, obtain final confirmation by inoculating the suspect colonies to the wells on commercially available diagnostic kits in accordance with the manufacturer’s instructions.
Bibliography

[3] Texas specification No. 475/64-01
Certification marking

Products that conform to Uganda standards may be marked with Uganda National Bureau of Standards (UNBS) Certification Mark shown in the figure below.

The use of the UNBS Certification Mark is governed by the Standards Act, and the Regulations made thereunder. This mark can be used only by those licensed under the certification mark scheme operated by the Uganda National Bureau of Standards and in conjunction with the relevant Uganda Standard. The presence of this mark on a product or in relation to a product is an assurance that the goods comply with the requirements of that standard under a system of supervision, control and testing in accordance with the certification mark scheme of the Uganda National Bureau of Standards. UNBS marked products are continually checked by UNBS for conformity to that standard.

Further particulars of the terms and conditions of licensing may be obtained from the Director, Uganda National Bureau of Standards.