الهيئة العامة للغذاء والدواء SAUDI FOOD & DRUG AUTHORITY (SFDA)

مشروع مواصفة

Draft Standard

قطاع الغذاء

Food Sector

Contaminants and toxins in food and feed

I.C.S: 67.040

This document is a draft Saudi Standard Circulated for comments. It is, therefore, subject to alteration and modification and may not be referred to as a Saudi Standard Until approved by SFDA. هذه الوثيقة مشروع لمواصفة قياسية سعودية تم توزيعها لإبداء الرأي والملحوظات بشأتها، لذلك فإنها عرضة للتغيير والتبديل، ولا يجوز الرجوع إليها كمواصفة قياسية سعودية إلا بعد اعتمادها من الهيئة.

Foreword

Saudi Food and Drug Authority (SFDA) is an independent organization with purpose of regulating and monitoring of foods, drugs and medical devices. One of SFDA functions is to issue national Standards /Technical Regulation in the fields of foods, drugs and medical devices, whether imported or manufactured locally. SFDA food sector has updated Standard No. SFDA.FD/ CAC 193 "GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOODS". This standard has been approved as national standard by SFDA board of directors in its meeting No () Held on (/ /1440 AH), (/ /2019).

* The limits of food contaminants in this regulation replaced all the food contaminants limits in the approved GSO food technical regulations and standards – if no limits or contaminants are listed for certain food products in this regulation, the food contaminants limits in food product regulation shall be applied.

Contaminants and toxins in food and feed

1. Scope

This Standard contains maximum levels of contaminants and toxicants in food and feed, This Standard includes only maximum levels of contaminants and natural toxicants in feed in cases where the contaminant in feed can be transferred to food of animal origin and can be relevant for public health.

2. Definition of Terms

When reference is made to foods, this also applies to animal feed, in those cases where this is appropriate.

2.1 **Contaminant**

Any substance not intentionally added to food or feed for food producing animals, which is present in such food or feed as a result of the production (including operations carried out in crop husbandry, animal husbandry and veterinary medicine), manufacture, processing, preparation, treatment, packing, packaging, transport or holding of such food or feed, or as a result of environmental contamination. The term does not include insect fragments, rodent hairs and other extraneous matter.

This Standard applies to any substance that meets the terms for a contaminant, including contaminants in feed for food-producing animals, except:

- 1) Contaminants having only food and feed quality significance (e.g. copper), but no public health significance.
- 2) Pesticide residues.
- 3) Residues of veterinary drugs, and residues of feed additives¹.
- 4) Microbial toxins, such as botulinum toxin and staphylococcus enterotoxin.

5) Residues of processing $aids^2$.

2.2 Natural toxins included in this Standard

The definition of a contaminant implicitly includes naturally occurring toxicants including toxic metabolites of certain microfungi that are not intentionally added to food and feed (mycotoxins).

Toxins that are produced by algae and that may be accumulated in edible aquatic organisms such as shellfish (phycotoxins) are also included in this Standard. Mycotoxins and phycotoxins are both subclasses of contaminants.

¹ Feed additives: "Any intentionally added ingredient not normally consumed as feed by itself, whether or not it has nutritional value, which affects the characteristics of feed or animal products.

Residues of feed additives include the parent compounds and/or their metabolites in any edible portion of the animal product, and include residues of associated impurities of the feed additive concerned.

² Processing aids are any substance or material, not including apparatus or utensils, and not consumed as a food ingredient by itself, intentionally used in the processing of raw materials, foods or its ingredients, to fulfil a certain technological purpose during treatment or processing and which may result in the non-intentional but unavoidable presence of residues or derivatives in the final product.

Endogenous natural toxicants, such as e.g. Solanine in potatoes, that are implicit constituents of food and feed resulting from a genus, species or strain ordinarily producing hazardous levels of a toxic metabolite(s), i.e. phytotoxins are not generally considered within the scope of this Standard. They are, however, within the terms of reference of CCCF and will be dealt with on a case-by-case basis.

2.3 Maximum level and related terms¹

The **maximum level (ML)** for a contaminant in a food or feed commodity is the maximum concentration of that substance recommended by this standard to be legally permitted in that commodity.

3. Principles Regarding Contaminants in Food and Feed

3.1 General

Contamination of food and feed may pose a risk to human (and/or animal health). Moreover in some cases they may also have a negative impact on the quality of the food or feed. Food and feed can become contaminated by various causes and processes.

Contaminant levels in food and feed shall be as low as reasonably achievable through best practice such as Good Agricultural Practice (GAP) and Good Manufacturing Practice (GMP) following an appropriate risk assessment. The following actions may serve to prevent or to reduce contamination of feed and food²:

- Preventing food and feed contamination at the source, e.g. by reducing environmental pollution.
- Applying appropriate technology control measure(s) in food and feed production, manufacture, processing, preparation, treatment, packing, packaging, transport or holding.
- Applying measures aimed at decontamination of contaminated feed or food and measures to prevent contaminated feed or food to be marketed for consumption.

To ensure that adequate action is taken to reduce contamination of food and feed a Code of Practice shall be elaborated comprising source related measures and Good Manufacturing Practice as well as Good Agricultural Practice in relation to the specific contamination problem.

¹ For the contaminants methylmercury, radionuclides, acrylonitrile and vinylchloride monomer a Codex guideline level (GL) has been established.

A *Codex guideline level* (*GL*) is the maximum level of a substance in a food or feed commodity which is recommended by the Codex Alimentarius Commission to be acceptable for commodities moving in international trade.

² In addition, reference is made to the *Code of Practice for source Directed measures to reduce contamination of food with chemicals* (CXC 49-2001) and the *Code of Practice on Good Animal Feeding* (CXC 54-2004).

The degree of contamination of food and feed and the effect of actions to reduce contamination shall be assessed by monitoring, survey programs and more specialized research programs, where necessary.

3.2 Principles for establishing maximum levels in food and feed

MLs shall only be set for food in which the contaminant may be found in amounts that are significant for the total exposure of the consumer.

3.3 Specific criteria

The following criteria should (not preventing the use of other relevant criteria) be considered when developing MLs and/or other measures in connection with the General Standard for Contaminants and Toxins in Food and Feed.

Toxicological information

- identification of the toxic substance(s);
- metabolism by humans and animals, as appropriate;
- toxicokinetics and toxicodynamics including information on possible carry-over of the toxic substance from feed to edible animal tissue/products;
- information about acute and long term toxicity and other relevant toxicity data; and
- integrated toxicological expert advice regarding the acceptability and safety of intake levels of contaminants, including information on any population groups which are especially vulnerable.

Analytical data

- validated qualitative and quantitative data on representative samples; and
- appropriate sampling procedures.

Intake data

- presence in food of dietary significance for the contaminant;
- presence in food that are widely consumed;
- presence in feed and feed components;
- food intake data for average and most exposed/high consumer groups;
- results from total diet studies;
- calculated contaminant intake data from food consumption models;
- data on intake by susceptible groups; and
- data on intake by food producing animals.

Technological considerations

• Information about contamination processes, technological possibilities, production and manufacturing practices and economic aspects related to contaminant level management and control.

Risk assessment and risk management considerations

- risk management options and considerations;
- consideration of possible maximum levels in food and feed based on the criteria mentioned above; and
- consideration of alternative solutions.

AFLATOXINS, TOTAL

Reference to JECFA:	31 (1987), 46 (1996), 49 (1997), 68 (2007)		
Toxicological guidance value:	Carcinogenic potency estimates for aflatoxins B, G, M (1997, Intake should be reduced to levels as low as reasonably possible)		
Contaminant definition:	Aflatoxins total $(B1 + B2 + G1 + G2)$		
Synonyms:	Abbreviations, AFB, AFG, with numbers, to designate specific compounds		
	Code of Practice for the Prevention and Reduction of Aflatoxin Contamination in Peanuts (CXC 55-2004)		
Related code of practice:	Code of Practice for the Prevention and Reduction of Aflatoxin Contamination in Tree Nuts (CXC 59-2005)		
	Code of Practice for the Reduction of Aflatoxin B1 in Raw Materials and Supplemental Feedingstuffs for Milk Producing Animals (CXC 45-1997)		
	Code of Practice for the Prevention and Reduction of Aflatoxin		

Commodity/Product Name	Maximum Level (ML) µg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Almonds	10	Whole commodity after removal of shell.	The ML applies to almonds "ready-to- eat" (**) For sampling plan, see Annex 2.
Almonds	15	Whole commodity after removal of shell.	The ML applies to almonds intended for further processing (*) For sampling plan, see Annex 2.
Brazil nuts	10	Whole commodity	The ML applies to shelled Brazil nuts ready-to-eat (**). For sampling plan, see Annex 2.
Brazil nuts	15	Whole commodity	The ML applies to shelled Brazil nuts intended for further processing (*) For sampling plan, see Annex 2.
Hazelnuts	10	Whole commodity after removal of shell.	The ML applies to hazelnuts, also known as filberts, "ready to eat" (**) For sampling plan, see Annex 2.
Hazelnuts	15	Whole commodity after removal of shell.	The ML applies to hazelnuts, also known as filberts, intended for further processing (*) For sampling plan, see Annex 2.
Peanuts	15	Unless specified, seed or kernels, after emoval of shell or husk.	The ML applies for peanuts, also known as groundnuts, intended for further processing (*). For sampling plan, see Annex 1.
Pistachios	10	Whole commodity after removal of shell.	The ML applies to pistachios "ready to eat" (**). For sampling plan, see Annex 2.
Pistachios	15	Whole commodity after removal of shell.	The ML applies to pistachios intended for further processing (*) For sampling plan, see Annex 2.
Dried figs	10	Whole commodity	The ML applies to dried figs "ready-to- eat" (**) For sampling plan see Annex 3.

Contamination in Dried Figs (CXC 65-2008)

- (*) "destined for further processing" means intended to undergo an additional processing/treatment that has proven to reduce levels of aflatoxins before being used as an ingredient in foodstuffs, otherwise processed or offered for human consumption. Processes that have proven to reduce levels of aflatoxins are shelling, blanching followed by colour sorting, and sorting by specific gravity and colour (damage). There is some evidence that roasting reduces aflatoxins in pistachios but for other nuts the evidence is still to be supplied.
- (**) "ready-to-eat" means "not intended to undergo an additional processing/treatment that has proven to reduce levels of aflatoxins before being used as ingredient in foodstuffs, otherwise processed or offered for human consumption.

	011.		
Foods	20	Whole commodity	With the exception of foodstuffs
			listed in table.
			Nuts with exception mentioned, to
Nuts with exception			be subjected to sorting, or other
mentioned	10	Whole commodity	physical treatment, before human
mentioned			consumption or use as an
			ingredient in foodstuffs
			Nuts with exception mentioned,
Nuts with exception	4	Whele commodity	intended for direct human
mentioned	4	Whole commodity	consumption or use as an
			ingredient in foodstuffs
			Dried fruit, other than dried figs, to
Dried fruit and dried	10		be subjected to sorting, or other
Dried fruit and dried		Whole commodity	physical treatment, before human
fruit products			consumption or use as an
			ingredient in foodstuffs
			Dried fruit, other than dried figs,
Drived fruit, and drived			and processed products thereof,
Dried fruit and dried	4 V	Whole commodity	intended for direct human
fruit products			consumption or use as an
			ingredient in foodstuffs
			All cereals and all products derived
Cereals and all	4		from cereals, including processed
products derived	4	Whole commodity	cereal products, with the exception
from cereals			of foodstuffs listed in table.
			Maize and rice to be subjected to
Maize and rice	10	Whole commodity	sorting or other physical treatment
			before human consumption or use

			as an ingredient in foodstuffs
			Following species of spices:
			Capsicum spp. (dried fruits thereof,
			whole or ground, including chillies,
			chilli powder, cayenne and paprika)
			Piper spp. (fruits thereof, including
Spices	10	Whole commodity	white and black pepper)
			Myristica fragrans (nutmeg)
			Zingiber officinale (ginger)
			Curcuma longa (turmeric)
			Mixtures of spices containing one or
			more of the abovementioned spices
Animal Feeds – Corn		Whole commodity	Corn and peanut products intended
and peanut products	300		for finishing (i.e., feedlot) beef
			cattle
Animal Feeds -		Whole commodity	Cottonseed meal intended for beef,
Cottonseed meal	300		cattle, swine, or poultry (regardless
			of age or breeding status
Animal Feeds – Corn	100	Whole commodity	Corn and peanut products intended
and peanut products			for breeding beef cattle, or mature
			poultry
Animal Feeds -			Corn, peanut products, and other
Corn, peanut	20	Whole commodity	animal feeds and feed ingredients
products, and other	20	Whole commonly	but excluding cottonseed meal,
animal feeds			intended for immature animals
Animal Feeds -			Corn, peanut products, cottonseed
Corn, peanut			meal, and other animal feed
products, cottonseed	20	Whole commodity	ingredients intended for dairy
meal, and other		whole commonly	animals, for animal species or uses
animal feed			not specified above, or when the
			intended use is not known

AFLATOXIN M₁

Reference to JECFA:	56 (20	001)	
Toxicological guidance	case a of pro very s indivi large o consu Hepat conce protec	consumers of these products would be impossible to demonstrate. Hepatitis B virus carriers might benefit from a reduction in the aflatoxi concentration in their diet, and the reduction might also offer some protection in hepatitis C virus carriers).	
Contaminant definition	Aflato	oxin M1	
Synonyms:	AFM1		
Related code of practice	Δ•	0	tion of Aflatoxin B_1 in Raw Materials and Milk Producing Animals (CXC 45-1997)
Commodity/Product Name	Maximum Level (ML) µg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Milks	0.5	Whole commodity.	Milk is the normal mammary secretion of milking animals obtained from one or more milkings without either addition to it or extraction from it, intended for consumption as liquid milk or for further processing. A concentration factor applies to partially or wholly dehydrated milks.

DEOXYNIVALENOL (DON)

Reference to JECFA:	56 (2001), 72 (2010)		
	Group PMTDI 0.001 mg/kg bw (2010, for DON and its acetylated derivates)		
Toxicological guidance value:	Group ARfD 0.008 mg/kg bw (2010, for DON and its acetylated derivates)		
Contaminant definition:	Deoxynivalenol		
Synonyms:	Vomitoxin; Abbreviation, DON		
	Code of Practice for the Prevention and Reduction of Mycotoxin		

Related code of practice: Code of Practice for the Prevention and Reduction of Mycotoxin Contamination in Cereals (CXC 51-2003)

Commodity/Product Name	Maximum Level (ML) μg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Cereal-based foods for infants and young children	200	ML applies to the commodity on a dry matter basis.	All cereal-based foods intended for infants (up to 12 months) and young children (12 to 36 months)
Flour, meal, semolina and flakes derived from wheat, maize or barley	1000		
Cereal grains (wheat, maize and barley) destined for further processing	2000		"Destined for further processing" means intended to undergo an additional processing/treatment that has proven to reduce levels of DON before being used as an ingredient in foodstuffs, otherwise processed or offered for human consumption. Codex members may define the processes that have been shown to reduce levels
Pasta (dry)	750		
Bread, pastries, biscuits, cereal snacks and breakfast cereals	500		Bread (including small bakery wares), pastries, biscuits, cereal snacks and breakfast cereals

FUMONISINS $(\mathbf{B}_1 + \mathbf{B}_2)$

Commodity/Product	Maximum Level (ML)	Portion of the Commodity/Product	Notes/Remarks	
Related code of practic	Δ•	Code of Practice for the Prevention and Reduction of Mycotoxin Contamination in Cereals (CXC 51-2003)		
Synonyms:		Several related compounds have been described, notably fumonisin B_1 , B_2 and B_3 (abbreviation: FB ₁ etc.)		
Contaminant definition	I: Fumo	Fumonisins (B ₁ + B ₂)		
Toxicological guidance	value: PMT	PMTDI 0.002 mg/kg bw (2001, 2011)		
Reference to JECFA:	56 (20	56 (2001), 74 (2011)		

Name	Level (ML) µg/kg	Commodity/Product to which the ML applies	Notes/Remarks
Raw maize grain	4000	Whole commodity	
Maize flour and maize meal	2000	Whole commodity	
Maize	1000		for direct human consumption
Maize-based breakfast cereals and maize- based snacks	800		
Processed maize- based foods and baby foods for infants and young children	200		
Maize-based foods for direct human consumption	1000		for direct human consumption

OCHRATOXIN A

Reference to JECFA:	37 (1990), 44 (1995), 56 (2001), 68 (2007)		
Toxicological guidance value:	PTWI 0.0001 mg/kg bw (2001)		
Contaminant definition:	Ochratoxin A		
Synonyms:	(The term "ochratoxins" includes a number of related mycotoxins (A, B, C and their esters and metabolites), the most important one being ochratoxin A)		
	Code of Practice for the Prevention and Reduction of Mycotoxin Contamination in Cereals (CXC 51-2003)		
Related code of practice:	Code of Practice for the Prevention and Reduction of Ochratoxin A Contamination in Wine (CXC 63-2007)		
	Code of Practice for the Prevention and Reduction of Ochratoxin A Contamination in Coffee (CXC 69-2009)		
	Code of Practice for the Prevention and Reduction of Ochratoxin A		

Commodity/Product Name	Maximum Level (ML) μg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Wheat	5	Whole commodity	The ML applies to raw common wheat, raw durum wheat, raw spelt and raw emmer.
Barley	5	Whole commodity	The ML applies to raw barley.
Rye	5	Whole commodity	The ML applies to raw rye.
Unprocessed cereals	5		Unprocessed cereals
Products derived from unprocessed cereals, including processed cereal products and cereals	3		All products derived from unprocessed cereals, including processed cereal products and cereals intended for direct human consumption with the exception of foodstuffs listed in table.
Dried vine fruit	10		Dried vine fruit (currants, raisins and sultanas)
Roasted coffee beans and ground roasted coffee	5		excluding soluble coffee
Soluble coffee	10		
Grape juice and concentrated grape juice	2		Grape juice, concentrated grape juice as reconstituted, grape nectar, grape must and concentrated grape must as reconstituted, intended for direct human consumption
Processed cereal- based foods and baby foods for infants and young children	0.5		
Dietary foods for special medical purposes intended specifically for infants	0.5		
Spices, including dried spices	15		<i>Piper</i> spp (fruits thereof, including white and black pepper)

Code of Practice for the Prevention and Reduction of Ochratoxin A contamination in Cocoa (CXC 72-2013)

		<i>Myristica fragrans</i> (nutmeg) <i>Zingiber officinale</i> (ginger) <i>Curcuma longa</i> (turmeric)
Pepper	15	Capsicum spp. (dried fruits thereof, whole or ground, including chillies, chilli powder, cayenne and paprika)
Mixtures of spices	15	Mixtures of spices containing one of the abovementioned spices
Liquorice root	20	Liquorice root, ingredient for herbal infusion
Liquorice extract	80	For use in food in particular beverages and confectionary
Wheat gluten	8	not sold directly to the consumer

PATULIN

Reference to JECFA:	35 (1	989), 44 (1995)		
Toxicological guidance	value: PMT	PMTDI 0.0004 mg/kg bw (1995)		
Contaminant definition	Patu	lin		
Related code of practice:		0	Prevention and Reduction of Patulin e and Apple Juice Ingredients in Other	
Commodity/Product Name	Maximum Level (ML) μg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks	
Apple juice	50	Whole commodity (not concentrated) or commodity reconstituted to the original juice concentration.	Relevant Codex commodity standard include CXS 247-2005 (apple products only). The ML applies also to apple juice used as an ingredient in other beverages.	
Solid apple products and apple puree	25		Solid apple products, including apple compote, apple puree intended for direct consumption with exception mentioned	
Apple juice and solid apple products	10		Apple juice and solid apple products, including apple compote and apple puree, for infants and young children and labelled and sold as such	
Baby foods other than processed cereal- based foods for infants and young children	10			

ARSENIC

	5 (1960), 10 (1967), 27 (1983), 33 (1988), 72 (2010)	
Reference to JECFA:	SFDA Inorganic Arsenic in Rice and Rice Products Risk assessment	
Toxicological guidance value:	At the 72nd meeting of JECFA (2010), the inorganic arsenic lower limit on the benchmark dose for a 0.5% increased incidence of lung cancer (BMDL 0.5) was determined from epidemiological studies to be 3.0 μ g/kg bw/day (2–7 μ g/kg bw/day based on the range of estimated total dietary exposure) using a range of assumptions to estimate total dietary exposure to inorganic arsenic from drinking-water and food. The JECFA noted that the provisional tolerable weekly intake (PTWI) of 15 μ g/kg bw (equivalent to 2.1 μ g/kg bw/day) is in the region of the BMDL 0.5 and therefore was no longer appropriate. The JECFA withdrew the previous PTWI.	
Contaminant definition:	Arsenic: total (As-tot) when not otherwise mentioned; inorganic arsenic (As-in); or other specification	
Synonyms:	As	
Related code of practice:	Code of Practice for Source Directed Measures to Reduce Contamination of Foods with Chemicals (CXC 49-2001)	
	Code of Practice for the Prevention and Reduction of Arsenic	

Code of Practice for the Prevention and Contamination in Rice (CXC 77-2017)

Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Edible fats and oils	0.1	Whole commodity	Relevant Codex commodity standards are CXS 19-1981, CXS 33-1981, CXS 210-1999, CXS 211-1999 and CXS 329-2017 For fish oils covered by CXS 329-2017, the ML is for fish oils (As-in). Countries or importers may decide to use their own screening when applying the ML for As-in in fish oils by analysing total arsenic (As-tot) in fish oils. If the As-tot concentration is below the ML for As-in, no further testing is required and the sample is determined to be compliant with the ML. If the As-tot concentration is above the ML for As-in, follow-up testing shall be conducted to determine if the As-in concentration is above the ML.
Fat spreads and blended spreads	0.1		Relevant Codex commodity standard is CXS 256-2007.
Natural mineral waters	0.01		Relevant Codex commodity standard is CXS 108-1981. Calculated as total As in mg/l.
Rice, husked	0.25	Whole commodity	Determined as inorganic Arsenic
Rice, polished	0.08	Whole commodity	Determined as inorganic Arsenic
Salt, food grade	0.5		Relevant Codex commodity standard is CXS 150-1985.

Rice Products	0.2	Determined as inorganic Arsenic Rice pies, rice flakes and rice cakes
Rice for baby and infant food	0.05	Determined as inorganic Arsenic Rice for baby and infant food

CADMIUM

Reference to JECFA:	16 (1	972), 33 (1988), 41 (1993) (2010)	, 55 (2000), 61 (2003), 64 (2005), 73	
sr lo Toxicological guidance value: 7: a		In view of the long half-life of cadmium, daily ingestion in food has a small or even a negligible effect on overall exposure. In order to assess long- or short-term risks to health due to cadmium exposure, dietary intake should be assessed over months, and tolerable intake should be assessed over a period of at least 1 month. To encourage this view, at the 73^{rd} meeting (2010) the JECFA decided to express the tolerable intake as a monthly value in the form of a provisional tolerable monthly intake (PTMI) and established a PTMI of 25 µg/kg bw.		
Contaminant definition	Cadm	nium, total		
Synonyms:	Cd			
Related code of practic	Δ•	of Practice for Source Dir ods with Chemicals (CXC	ected Measures to Reduce Contamination 49-2001)	
Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks	
Brassica vegetables	0.05	Head cabbages and kohlrabi: whole commodity as marketed, after removal of obviously decomposed or withered leaves. Cauliflower and broccoli: flower heads (immature inflorescence only). Brussels sprouts: "buttons" only.	The ML does not apply to Brassica leafy vegetables.	
Bulb vegetables	0.05	Bulb/dry onions and garlic: whole commodity after removal of roots and adhering soil and whatever parchment skin is easily detached.		
Fruiting vegetables	0.05	Whole commodity after removal of stems. Sweet corn and fresh corn: kernels plus cob without husk.	The ML does not apply to tomatoes and edible fungi.	
Leafy vegetables	0.2	Whole commodity as usually marketed, after removal of obviously decomposed or withered leaves.	The ML also applies to Brassica leafy vegetables.	
Legume vegetables	0.1	Whole commodity as consumed. The succulent forms may be consumed as whole		

		pods or as the shelled product.	
Pulses	0.1	Whole commodity	The ML does not apply to soya bean (dry).
Root and tuber vegetables	0.1	Whole commodity after removing tops. Remove adhering soil (e.g. by rinsing in running water or by gentle brushing of the dry commodity). Potato: peeled potato.	The ML does not apply to celeriac.
Stalk and stem vegetables	0.1	Whole commodity as marketed after removal of obviously decomposed or withered leaves. Rhubarb: leaf stems only. Globe artichoke: flower head only. Celery and asparagus: remove adhering soil.	
Cereal grains	0.1	Whole commodity	The ML does not apply to buckwheat, cañihua, quinoa, wheat and rice.
Rice, polished	0.4	Whole commodity	caninua, quinoa, wheat and nee.
Wheat	0.2	Whole commodity	The ML applies to common wheat, durum wheat, spelt and emmer.
Marine bivalve molluscs	2	Whole commodity after removal of shell.	The ML applies to clams, cockles and mussels but not to oysters and scallops.
Cephalopods	2	Whole commodity after removal of shell.	The ML applies to cuttlefishes, octopuses and squids without viscera
Natural mineral waters	0.003		Relevant Codex commodity standard is CXS 108-1981. The ML is expressed in mg/l.
Salt, food grade	0.5		Relevant Codex commodity standard is CXS 150-1985.
Chocolate containing or declaring \geq 50% to < 70% total cocoa solids on a dry matter basis	0.8	Whole commodity as prepared for wholesale or retail distribution	Including sweet chocolate, Gianduja chocolate, semi – bitter table chocolate, Vermicelli chocolate / chocolate flakes, and bitter table chocolate.
Chocolate containing or declaring ≥ 70% total cocoa solids on a dry matter basis	0.9	Whole commodity as prepared for wholesale or retail distribution	Including sweet chocolate, Gianduja chocolate, semi – bitter table chocolate, Vermicelli chocolate / chocolate flakes, and bitter table chocolate.
Vegetables and fruit, with exception mentioned	0.05		with exception mentioned
Mushroom	0.2		
Fungi with exception mentioned	1		with exception mentioned
Soy beans	0.2		
Cocoa powder (drinking chocolate)	0.6		Cocoa powder sold to the final consumer or as an ingredient in sweetened cocoa powder sold to the final consumer (drinking chocolate)
Milk chocolate with < 30 % total dry cocoa solids	0.1		

Chocolate with < 50 %				
total dry cocoa solids;				
milk chocolate with ≥	0.3			
30 % total dry cocoa				
solids				
Meat of bovine animals,			excluding offal	
sheep and poultry	0.05			
	0.0		avaluation offet	
Horsemeat	0.2		excluding offal	
Liver of bovine animals,				
sheep, poultry and	0.5			
horse				
Kidney of bovine				
animals, sheep, poultry	1			
and horse				
Muscle meat of fish:		Muscle meat		
Mackerel, tuna and	0.1			
bichique				
Muscle meat of fish:		Muscle meat		
bullet tuna	0.15	widsele meat		
Muscle meat of fish:		Muscle meat		
	0.05	Muscle meat		
Anchovy, swordfish and	0.25			
sardine				
Muscle meat of Fish		Muscle meat		
with exception	0.05			
mentioned				
Crustaceans	0.5	Muscle meat		
Powdered formulae				
manufac- tured from				
cows' milk proteins or	0.01			
protein hydrolysates				
Liquid formulae				
manufactured from				
cows' milk proteins or	0.005			
protein hydrolysates				
Powdered formulae				
manufac-tured from				
soya protein isolates,	0.02			
alone or in a mixture				
with cows' milk proteins				
Liquid formulae				
manufactured from				
soya protein isolates,	0.01			
alone or in a mixture				
with cows' milk proteins				
Processed cereal-				
based foods and baby				
foods for infants and	0.04			
young children				
Food supplements				
consisting exclusively				
or mainly of dried	~			
seaweed, products	3			
derived from seaweed,				
or of dried bivalve				
molluscs				
Food supplements with	1			
exception mentioned	I.			
exception mentioned		1		

LEAD

Reference to JECFA:	10 (1966), 16 (1972), 22 (1978), 30 (1986), 41 (1993), 53 (1999), 73 (2010)
Toxicological guidance value:	Based on the dose–response analyses, at the 73rd meeting (2010), JECFA estimated that the previously established PTWI of 25 μ g/kg bw is associated with a decrease of at least 3 intelligence quotient (IQ) points in children and an increase in systolic blood pressure of approximately 3 mmHg (0.4 kPa) in adults. While such effects may be insignificant at the individual level, these changes are important when viewed as a shift in the distribution of IQ or blood pressure within a population. The JECFA therefore concluded that the PTWI could no longer be considered health protective and withdrew it.
Contaminant definition:	Lead, total
Synonyms:	Pb
Related code of practice:	Code of Practice for the Prevention and Reduction of Lead Contamination in Foods (CXC 56-2004)
	Code of Practice for Source Directed Measures to Reduce Contamination of Foods with Chemicals (CXC 49-2001)

Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Berries and other small fruits	0.1	Whole commodity after removal of caps and stems.	The ML does not apply to cranberry, currant and elderberry.
Cranberry	0.2	Whole commodity after removal of caps and stems.	
Currants	0.2	Fruit with stem.	
Elderberry	0.2	Whole commodity after removal of caps and stems.	
Fruits	0.1	Whole commodity. Berries and other small fruits: whole commodity after removal of caps and stems. Pome fruits: whole commodity after removal of stems. Stone fruits, dates and olives: whole commodity after removal of stems and stones, but the level calculated and expressed on the whole commodity without stem. Pineapple: whole commodity after	The ML does not apply to cranberry, currant and elderberry.

	Maximum	Portion of the	
Commodity/Product	Level (ML)	Commodity/Product to	Notes/Remarks
Name	mg/kg	which the ML applies	Notes/Kemarks
		removal of crown.	
		Avocado, mangos and	
		similar fruit with hard	
		seeds: whole commodity after	
		removal of stone but	
		calculated on whole	
		fruit.	
		Bulb/dry onions and	
		garlic: whole	
	A 4	commodity after	The ML does not apply to kale and leafy
Brassica vegetables	0.1	removal of roots and	Brassica vegetables.
		adhering soil and whatever parchment	
		skin is easily detached.	
		Bulb/dry onions and	
		garlic: whole	
		commodity after	
Bulb vegetables	0.1	removal of roots and	
		adhering soil and	
		whatever parchment skin is easily detached.	
		Whole commodity after	
		removal of stems	The MU dates and exclude from the and
Fruiting vegetables	0.05	Sweet corn and fresh	The ML does not apply to fungi and mushrooms.
		corn: kernels plus cob	musmooms.
		without husk.	
		Whole commodity as usually marketed, after	The ML applies to leafy Pression
Leafy vegetables	0.3	removal of obviously	The ML applies to leafy Brassica vegetables but does not apply to
Loury vogetabled	0.0	decomposed or	spinach.
		withered leaves.	
		Whole commodity as	
		consumed. The	
Legume vegetables	0.1	succulent forms may be consumed as whole	
		pods or as the shelled	
		product.	
Fresh farmed			
mushrooms (common			
mushrooms (Agaricus			
bisporous), shiitake mushrooms (Lentinula	0.3	Whole commodity	Relevant Codex commodity standard is CXS 38-1981
edodes), and oyster			CNS 30-1901
mushrooms (Pleurotus			
ostreatus))			
Pulses	0.1	Whole commodity	
		Whole commodity after	
		removing tops. Remove	
Root and tuber	0.1	adhering soil (e.g. by rinsing in running water	
vegetables	0.1	or by gentle brushing of	
		the dry commodity).	
		Potato: peeled potato.	

Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Canned fruits	0.1	The ML applies to the product as consumed.	Relevant Codex commodity standards are CXS 242-2003, CXS 254-2007, CXS 78-1981, CXS 159-1987, CXS 42- 1981, CXS 99-1981, CXS 60-1981, CXS 62-1981
Jams, jellies and marmalades	0.4		Relevant Codex commodity standard is CXS 296-2009 (for jams and jellies only).
Mango chutney	0.4		Relevant Codex commodity standard is CXS 160-1987.
Canned vegetables	0.1	The ML applies to the product as consumed.	Relevant Codex commodity standard is CXS 297-2009.
Preserved tomatoes	0.05		Relevant Codex commodity standard is CXS 13-1981. In order to consider the concentration of the product, the determination of the maximum levels for contaminants shall take into account the natural total soluble solids, the reference value being 4.5 for fresh fruit.
Table olives	0.4		Relevant Codex commodity standard is CXS 66-1981.
Pickled cucumbers (cucumber pickles)	0.1		Relevant Codex commodity standard is CXS 115-1981.
Canned chestnuts and canned chestnuts puree	0.05		Relevant Codex commodity standard is CXS 145-1985.
Fruit juices	0.03	Whole commodity (not concentrated) or commodity reconstituted to the original juice concentration, ready to drink. The ML applies also to nectars, ready to drink.	The ML does not apply to juices exclusively from berries and other small fruit. Relevant Codex commodity standard is CXS 247-2005.
Fruit juices obtained exclusively from berries and other small fruits	0.05	Whole commodity (not concentrated) or commodity reconstituted to the original juice concentration, ready to drink. The ML applies also to nectars, ready to drink.	The ML does not apply to grape juice. Relevant Codex commodity standard is CXS 247-2005.
Grape juice	0.04	Whole commodity (not concentrated) or commodity reconstituted to the original juice concentration, ready to drink. The ML applies also to nectars, ready to drink.	Relevant Codex commodity standard is CXS 247-2005.

Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Cereal grains	0.2	Whole commodity	The ML does not apply to buckwheat cañihua and quinoa.
Infant formula, formula for special medical purposes intended for infants and follow-up formula	0.01	Whole commodity	Relevant Codex commodity standards are CXS 72-1981 and CXS 156-1987. The ML applies to formula as consumed.
Fish	0.3	Whole commodity (in general after removing the digestive tract)	
Meat of cattle and sheep	0.1	Whole commodity (without bones)	The ML also applies to fat from the meat.
Meat and fat of poultry	0.1	Whole commodity (without bones)	
Cattle, edible offal of	0.5	Whole commodity	
Poultry, edible offal of	0.5	Whole commodity	
Edible fats and oils	0.08	Whole commodity as prepared for wholesale or retail distribution.	Relevant Codex commodity standards are CXS 19-1981, CXS 33-1981, CXS 210-1999, CXS 211-1999 and CXS 329-2017
Fat spreads and blended spreads	0.04	Whole commodity as prepared for wholesale or retail distribution.	Relevant Codex commodity standard is CXS 256-2007.
Milk	0.02	Whole commodity	Milk is the normal mammary secretion of milking animals obtained from one or more milkings without either addition to it or extraction from it, intended for consumption as liquid milk or for further processing. A concentration factor applies to partially or wholly dehydrated milks
Secondary milk products	0.02	Whole commodity	The ML applies to the food as consumed.
Natural mineral waters	0.01		Relevant Codex commodity standard is CXS 108-1981. The ML is expressed in mg/l.
Salt, food grade	1	Whole commodity as prepared for wholesale or retail distribution	Relevant Codex commodity standard is CXS 150-1985. Excluding salt from marshes
Concentrated fruit juices and fruit nectars	0.05		
Infant formulae and follow-on formulae	0.02		
Crustaceans	0.5	Muscle meat	
Bivalve molluscs	1.5		
Cephalopods	1		Without viscera
Food supplements	3		

MERCURY

Reference to JECFA:	10 (1	10 (1966), 14 (1970), 16 (1972), 22 (1978), 72 (2010)		
Toxicological guidance value:		At the 72^{rd} meeting (2010), JECFA established a PTWI for inorganic mercury of 4 µg/kg bw. The previous PTWI of 5 µg/kg bw for total mercury, established at the sixteenth meeting, was withdrawn. The new PTWI for inorganic mercury was considered applicable to dietary exposure to total mercury from foods other than fish and shellfish. For dietary exposure to mercury from these foods the previously established PTWI for methyl mercury should be applied.		
Contaminant definition	n: Merc	ury, Total		
Synonyms:	Hg			
Related code of practic		of Practice for Source Dir ods with Chemicals (CXC	rected Measures to Reduce Contamination 49-2001)	
Commodity/Product Name	Maximum Level (ML) mg/kg	ML) Commodity/Product to which the ML applies Notes/Remarks		
Natural mineral waters	0.001		Relevant Codex commodity standard is CXS 108-1981. The ML is expressed in mg/l.	
Salt food grade	0.1		Relevant Codex commodity standard is CXS 150-1985.	
Tuna	1.2	Whole commodity after removing the digestive tract		
Alfonsino	1.5	Whole commodity after removing the digestive tract		
Marlin	1.7	Whole commodity after removing the digestive tract		
Shark	1.6	Whole commodity after removing the digestive tract		
Fishery products and muscle meat of fish with exception mentioned, Crustaceans and crabs	1			
Food supplements	0.1			
Wheat pink kernels	1		Pink kernels only	

METHYLMERCURY IN CERTAIN FISH SPECIES AND CRUSTACEANS

Reference to JECFA: 22 (1978), 33 (1988), 53 (1999), 61 (2003), 67 (2006)

Toxicological guidance value: PTWI 0.0016 mg/kg bw (2003, confirmed in 2006)

Contaminant definition	Methylmercury				
Related code of practice		Code of Practice for Source Directed Measures to Reduce Contamination of Foods with Chemicals (CXC 49-2001)			
Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks		
Tuna	1.2		The ML also applies to fresh or frozen		
Alfonsino	1.5	Whole commodity fresh or frozen (in general			
Marlin	1.7	after removing the digestive tract)	fish intended for further processing.		
Shark	1.6				
Crustaceans and crabs	1				

TIN

Reference to JECFA:	10 (1966), 14 (1970), 15 (1971), 19 (1975), 22 (1978), 26 (1982), 33 (1988), 55 (2000), 64 (2005)		
Toxicological guidance value:	PTWI 14 mg/kg bw (1988, expressed as Sn; includes tin from food additive uses; maintained in 2000)		
Contaminant definition:	Tin, total (Sn-tot) when not otherwise mentioned; inorganic tin (Sn-in); or other specification		
Synonyms:	Sn		
Delated and of practices	Code of Practice for the Prevention and Reduction of Inorganic Tin Contamination in Canned Foods (CXC 60-2005)		
Related code of practice:	Code of Practice for Source Directed Measures to Reduce Contamination		

Code of Practice for Source Directed Measures to Reduce Contamination of Foods with Chemicals (CXC 49-2001)

Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Canned foods (other than beverages)	250		The ML does not apply to non-tinplate canned cooked cured chopped meat, cooked cured ham, cooked cured pork shoulder, corned beef and luncheon meat. Relevant Codex commodity standards include CXS 62-1981, CXS 254-2007, CXS 296-2009, CXS 242-2003, CXS 297-2009, CXS 78-1981, CXS 159- 1987, CXS 42-1981, CXS 100-1981, CXS 99-1981, CXS 160-1987, CXS 66- 1981, CXS 13-1981, CXS 115-1981, CXS 57-1981, CXS 145-1981, CXS 98- 1981, CXS 96-1981, CXS 97-1981, CXS 88-1981,CXS 89-1981.
Canned beverages	150		Relevant Codex commodity standards include CXS 247-2005.
Cooked cured chopped meat	50		The ML applies to products in containers other than tinplate containers. Relevant Codex commodity standard is CXS 98-1981.
Corned beef	50		The ML applies to products in containers other than tinplate containers. Relevant Codex commodity standard is CXS 88-1981.
Luncheon meat	50		The ML applies to products in containers other than tinplate containers. Relevant Codex commodity standard is CXS 89-1981.
Canned baby foods and processed cereal- based foods for infants	50		

and young children, excluding dried and powdered products			
Canned infant formulae and follow-on formulae, excluding dried and powdered products	50		
Canned dietary foods for special medical purposes intended specifically for infants, excluding dried and powdered products	50		

RADIONUCLIDES

Commodity/Product Name	Guideline Level (GL) (Bq/kg)	Representative radionuclides	Portion of the Commodity/Product to which the GL applies	Notes/Remarks
Infant foods	1	Pu-238, Pu-239, Pu-240, Am-241		The GL applies to foods intended for consumption by infants.
Infant foods	100	Sr-90, Ru-106, I- 129, I-131, U-235		The GL applies to foods intended for consumption by infants.
Infant foods	1000	S-35 (*), Co-60, Sr- 89, Ru-103, Cs-134, Cs-137, Ce-144, Ir- 192		The GL applies to foods intended for consumption by infants.
Infant foods	1000	H-3(**), C-14, Tc-99		The GL applies to foods intended for consumption by infants.
Foods other than infant foods	10	Pu-238, Pu-239, Pu-240, Am-241		
Foods other than infant foods	100	Sr-90, Ru-106, I- 129, I-131, U-235		
Foods other than infant foods	1000	S-35 (*), Co-60, Sr- 89, Ru-103, Cs-134, Cs-137, Ce-144, Ir- 192		
Foods other than infant foods	10000	H-3(**), C-14, Tc-99		

(*)This represents the value for organically bound sulphur

(**)This represents the value for organically bound tritium

- Scope: The Guideline Levels apply to radionuclides contained in foods destined for human consumption and traded internationally, which have been contaminated following a nuclear or radiological emergency¹. These guideline levels apply to food after reconstitution or as prepared for consumption, i.e., not to dried or concentrated foods, and are based on an intervention exemption level of 1 mSv in a year.
- **Application**: As far as generic radiological protection of food consumers is concerned, when radionuclide levels in food do not exceed the corresponding Guideline Levels, the food should be considered as safe for human consumption. When the Guideline Levels are exceeded, national governments shall decide whether and under what circumstances the food should be distributed within their territory or jurisdiction. National governments may wish to adopt different values for internal use within their own territories where the assumptions concerning food distribution that have been made to derive the Guideline Levels may not apply, e.g., in the case of wide-spread radioactive contamination. For foods that are consumed in small quantities, such as spices,

¹ For the purposes of this document, the term "emergency" includes both accidents and malevolent actions.

that represent a small percentage of total diet and hence a small addition to the total dose, the Guideline Levels may be increased by a factor of 10.

Radionuclides: The Guideline Levels do not include all radionuclides. Radionuclides included are those important for uptake into the food chain; are usually contained in nuclear installations or used as a radiation source in large enough quantities to be significant potential contributors to levels in foods, and; could be accidentally released into the environment from typical installations or might be employed in malevolent actions. Radionuclides of natural origin are generally excluded from consideration in this document.

In the Table, the radionuclides are grouped according to the guideline levels rounded logarithmically by orders of magnitude. Guideline levels are defined for two separate categories "infant foods" and "other foods". This is because, for a number of radionuclides, the sensitivity of infants could pose a problem. The guideline levels have been checked against age-dependent ingestion dose coefficients defined as committed effective doses per unit intake for each radionuclide, which are taken from the "International Basic Safety Standards" (IAEA, 1996)¹.

Multiple radionuclides in foods: The guideline levels have been developed with the understanding that there is no need to add contributions from radionuclides in different groups. Each group should be treated independently. However, the activity concentrations of each radionuclide within the same group should be added together².

¹ Food and Agriculture Organization of the United Nations, International Atomic Energy Agency, International Labour Office, OECD Nuclear Energy Agency, Pan American Health Organization, World Health Organization (1996) International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, IAEA, Vienna.

 $^{^{2}}$ For example, if 134 Cs and 137 Cs are contaminants in food, the guideline level of 1 000 Bq/kg refers to the summed activity of both these radionuclides.

Annex A

SCIENTIFIC JUSTIFICATION FOR THE GUIDELINE LEVELS FOR RADIONUCLIDES IN FOODS CONTAMINATED FOLLOWING A NUCLEAR OR RADIOLOGICAL EMERGENCY

Infants and adults: The levels of human exposure resulting from consumption of foods containing radionuclides listed in Table 1 at the suggested guideline levels have been assessed both for infants and adults and checked for compliance with the appropriate dose criterion.

In order to assess public exposure and the associated health risks from intake of radionuclides in food, estimates of food consumption rates and ingestion dose coefficients are needed. It is assumed that 550 kg of food is consumed by an adult in a year. The value of infant food and milk consumption during first year of life used for infant dose calculation equal to 200 kg is based on contemporary human habit assessments. The most conservative values of the radionuclide-specific and age-specific ingestion dose coefficients, i.e. relevant to the chemical forms of radionuclides which are most absorbed from the gastro-intestinal tract and retained in body tissues, are taken from the IAEA.

Radiological criterion: The appropriate radiological criterion, which has been used for comparison with the dose assessment data below, is a generic intervention exemption level of around 1 mSv for individual annual dose from radionuclides in major commodities, e.g. food, recommended by the International Commission on Radiological Protection as safe for members of the public.

Naturally occurring radionuclides: Radionuclides of natural origin are ubiquitous and as a consequence are present in all foodstuffs to varying degrees. Radiation doses from the consumption of foodstuffs typically range from a few tens to a few hundreds of microsieverts in a year. In essence, the doses from these radionuclides when naturally present in the diet are unamenable to control; the resources that would be required to affect exposures would be out of proportion to the benefits achieved for health. These radionuclides are excluded from consideration in this document as they are not associated with emergencies.

One-year exposure assessment: It is conservatively assumed that during the first year after major environmental radioactive contamination caused by a nuclear or radiological emergency it might be difficult to readily replace foods imported from contaminated regions with foods imported from unaffected areas. According to FAO statistical data the mean fraction of major foodstuff quantities imported by all the countries worldwide is 0.1. The values in Table 1 as regards foods consumed by infants and the general population have been derived to ensure that if a country continues to import major foods from areas contaminated with radionuclides, the mean annual internal dose of its inhabitants will not exceed around 1 mSv (see Annex B). This conclusion might not apply for some radionuclides if the fraction of contaminated food is found to be higher than 0.1, as might be the case for infants who have a diet essentially based on milk with little variety.

Long-term exposure assessment: Beyond one year after the emergency the fraction of contaminated food placed on the market will generally decrease as a result of national restrictions (withdrawal from the market), changes to other produce, agricultural countermeasures and decay.

Experience has shown that in the long term the fraction of imported contaminated food will decrease by a factor of a hundred or more. Specific food categories, e.g. wild forest products, may show persistent or even increasing levels of contamination. Other categories of food may gradually be exempted from controls. Nevertheless, it must be anticipated that it may take many years before levels of individual exposure as a result of contaminated food could be qualified as negligible.

ASSESSMENT OF HUMAN INTERNAL EXPOSURE WHEN THE GUIDELINE LEVELS ARE APPLIED

For the purpose of assessment of the mean public exposure level in a country caused by the import of food products from foreign areas with residual radioactivity, in implementing the present guideline levels the following data should be used: annual food consumption rates for infants and adults, radionuclide- and age-dependent ingestion dose coefficients and the import/production factors. When assessing the mean internal dose in infants and adults it is suggested that due to monitoring and inspection the radionuclide concentration in imported foods does not exceed the present guideline levels. Using cautious assessment approach it is considered that all the foodstuffs imported from foreign areas with residual radioactivity are contaminated with radionuclides at the present guideline levels.

Then, the mean internal dose of the public, E (mSv), due to annual consumption of imported foods containing radionuclides can be estimated using the following formula:

E = GL(A) M(A) eing(A) IPF

where:

GL(A) is the Guideline Level (Bq/kg)

M(*A*) is the age-dependent mass of food consumed per year (kg)

eing(A) is the age-dependent ingestion dose coefficient (mSv/Bq)

IPF is the import/production factor¹ (dimensionless)

Assessment results presented in Table 2 both for infants and adults demonstrate that for all the twenty radionuclides doses from consumption of imported foods during the 1st year after major radioactive contamination do not exceed 1 mSv. It should be noted that the doses were calculated on the basis of a value for the IPF equal to 0.1 and that this assumption may not always apply, in particular to infants who have a diet essentially based on milk with little variety.

It should be noted that for ²³⁹Pu as well as for a number of other radionuclides the dose estimate is conservative. This is because elevated gastro-intestinal tract absorption factors and associated ingestion dose coefficients are applied for the whole first year of life whereas this is valid mainly during suckling period recently estimated by ICRP to be as average first six months of life. For the subsequent six months of the first year of life the gut absorption factors are much lower. This is not the case for ³H, ¹⁴C, ³⁵S, iodine and caesium isotopes.

As an example, dose assessment for ¹³⁷Cs in foods is presented below for the first year after the area contamination with this nuclide.

For adults: $E = 1\ 000\ Bq/kg\ 550\ kg\ 1.3\ 10^{-5}\ mSv/Bq\ 0.1 = 0.7\ mSv;$

For infants: E = 1 000 Bq/kg 200 kg 2.1 10⁻⁵ mSv/Bq 0.1 = 0.4 mSv

¹ The import/production factor (*IPF*) is defined as the ratio of the amount of foodstuffs imported per year from areas contaminated with radionuclides to the total amount produced and imported annually in the region or country under consideration.

TABLE 2

ASSESSMENT OF EFFECTIVE DOSE FOR INFANTS AND ADULTS FROM INGESTION OF IMPORTED FOODS IN A YEAR

	Guideline Level (Bq/kg)		Effective dose (mSv)	
Radionuclide			1 st year after major	
	Infant foods	Other foods	contamination	
			Infants	Adults
²³⁸ Pu		10	0.08	0.1
²³⁹ Pu	1		0.08	0.1
²⁴⁰ Pu	·	10	0.08	0.1
²⁴¹ Am			0.07	0.1
⁹⁰ Sr			0.5	0.2
¹⁰⁶ Ru		100	0.2	0.04
129	100		0.4	0.6
131			0.4	0.1
²³⁵ U	-		0.7	0.3
³⁵ S*	1000	1000	0.2	0.04
⁶⁰ Co			1	0.2
⁸⁹ Sr			0.7	0.1
¹⁰³ Ru			0.1	0.04
¹³⁴ Cs			0.5	1
¹³⁷ Cs			0.4	0.7
¹⁴⁴ Ce			1	0.3
¹⁹² lr			0.3	0.08
³ H**			0.002	0.02
¹⁴ C	1000	10000	0.03	0.3
⁹⁹ Tc			0.2	0.4

* This represents the value for organically bound sulphur

** This represents the value for organically bound tritium

ACRYLONITRILE

Reference to JECFA:	ference to JECFA: 28 (1984)			
Toxicological guidance value:		Provisional Acceptance (1984, the use of food-contact materials from which acrylonitrile may migrate is provisionally accepted on condition that the amount of the substance migrating into food is reduced to the lowest level technologically attainable)		
Contaminant definition	acrylc	acrylonitrile (monomer)		
Synonyms.		2-Propenenitrile; vinyl cyanide (VCN); cyanoethylene; abbreviations, AN, CAN.		
Related code of practic	۵ •	of Practice for Source Dir ods with Chemicals (CXC -	ected Measures to Reduce Contamination 49-2001)	
Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks	
Food	0.02			

CHLOROPROPANOLS

Reference to JECFA:		41 (1993; for 1,3-dichloro-2-propanol only), 57 (2001), 67 (2006)		
		PMTDI 0.002 mg/kg bw (2001, for 3-chloro-1,2-propanediol); maintained in 2006. Establishment of tolerable intake was considered to be inappropriate for 1,3-dichloro-2-propanol because of the nature of the toxicity (tumorogenic in various organs in rats and the contaminant can interact with chromosomes and/or DNA).		
	MOE	BMDL 10 cancer, 3.3 mg/kg bw/day (for 1,3-dichloro-2-propanol); MOE, 65 000 (general population), 2 400 (high level intake, including young children).		
Contaminant definition	a: 3-MC	PD		
Synonyms: m		Two substances are the most important members of this group: 3- monochloropropane-1,2-diol (3-MCPD, also referred to as 3- monochloro-1,2-propanediol) and 1,3-dichloro-2-propanol (1,3-DCP).		
Related code of practic	MCPI	Code of Practice for the Reduction of 3-Monochloropropane-1,2-diol (3- MCPD) during the production of Acid-Hydrolyzed Vegetable Proteins (Acid-HVPs) and Products that Contain Acid-HVPs (CXC 64–2008).		
	Techn	Technical Regulations SFDA.FD 26:2018 "Soy sauce"		
Commodity/Product	Maximum Level (ML)	Portion of the Commodity/Product	Notes/Remarks	
Name	mg/kg	to which the ML applies		
Liquid condiments containing acid hydrolyzed vegetable proteins	0.4		The ML does not apply to naturally fermented soy sauce.	
0	0.00			

0.02

Soy sauce

HYDROCYANIC ACID

Reference to JECFA:	39 (19	992), 74 (2011)	
Toxicological guidance	applie		e (2011, this cyanide-equivalent ARfD cyanogenic glycosides as the main
	PMTI	DI 0.02 mg/kg bw as cyani	de (2011)
Contaminant definition	n: See ex	xplanatory notes in the col	umn "Notes/Remarks"
Synonyms:	HCN		
Related code of practic	Δ•	of Practice for the Reduction of Practice for the Reduction of the second state of the	ion of Hydrocyanic Acid (HCN) in (CXC 73-2013)
Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Gari	2	Whole commodity	The ML is expressed as free hydrocyanic acid. Relevant Codex commodity standards include CXS 151-1989.
Cassava flour	10		The ML is expressed as total hydrocyanic acid Relevant Codex commodity standards include CXS 176-1989.

MELAMINE

Reference to JECFA:

FAO/WHO Expert Meeting (2008)

Toxicological guidance value: TDI 0.2 mg/kg bw (2008)

Contaminant definition: Melamine			
Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Food (other than infant formulae) and feed	2.5		The ML applies to food other than infant formula. The ML applies to levels of melamine resulting from its non-intentional and unavoidable presence in feed and food. The ML does not apply to feed and food for which it can be proven that the level of melamine higher than 2.5 mg/kg is the consequence of: • Authorised use of cyromazine as insecticide. The melamine level shall not exceed the level of cyromazine. • Migration from food contact materials taking account of any nationally authorised migration limit. The ML does not apply to melamine that could be present in the following feed ingredients / additives: guanidine acetic acid (GAA), urea and biuret, as a result of normal production processes.
Powdered infant formula	1		
Liquid infant formula	0.15		The ML applies to liquid infant formula as consumed.
Powdered infant formulae and follow-on formulae	1		

VINYL CHLORIDE MONOMER

Reference to JECFA:	28 (19	28 (1984)	
Toxicological guidance	value: which that the	vinyl chloride may migra	he use of food-contact materials from te is provisionally accepted, on condition migrating into food is reduced to the ievable.
Contaminant definition	Vinyle	chloride monomer	
Synonyms:	Mono	chloroethene, chloroethyle	ene; abbreviation VC or VCM
Related code of practic	۵ •	of Practice for Source Dir ods with Chemicals (CXC	ected Measures to Reduce Contamination 49-2001)
Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Food	0.01		The GL in food packaging material is 1.0 mg/kg.

TUTIN

Reference to JECFA:

Toxicological guidance value:

Contaminant definition: Tutin

Synonyms: Tutin

Related code of practice	Food 2016)		Zealand (Food Standard: Tutin in Honey
Commodity/Product Name	Maximum Level (ML) mg/kg	Portion of the Commodity/Product to which the ML applies	Notes/Remarks
Honey comb	0.7		Honey bees in honeycomb cell
Honey	0.7		

Annex 1

SAMPLING PLAN FOR TOTAL AFLATOXINS IN PEANUTS INTENDED FOR FURTHER PROCESSING INTRODUCTION

- 1. The sampling plan calls for a single 20 kg laboratory sample of shelled peanuts (27 kg of unshelled peanuts) to be taken from a peanut lot (sub-lot) and tested against a maximum level of 15 μ g/kg total aflatoxins.
- 2. This sampling plan has been designed for enforcement and controls concerning total aflatoxins in bulk consignments of peanuts traded in the export market. To assist member countries in implementing the sampling plan, sample selection methods, sample preparation methods and analytical methods required, to quantify aflatoxin in bulk peanut lots are described in this document.

Lot	An identifiable quantity of a food commodity delivered at one time and
	determined by the official to have common characteristics, such as
	origin, variety, type of packing, packer, consignor or markings.
Sublot	Designated part of a large lot in order to apply the sampling method on
	that designated part. Each sublot must be physically separate and
	identifiable.
Sampling plan	It is defined by an aflatoxin test procedure and an accept/reject limit.
	An aflatoxin test procedure consists of three steps: sample selection,
	sample preparation and aflatoxin quantification. The accept/reject limit
	is a tolerance usually equal to the Codex maximum level.
Incremental	A quantity of material taken from a single random place in the lot or
sample	sublot.
Aggregate sample	The combined total of all the incremental samples taken from the lot or
	sublot. The aggregate sample has to be at least as large as the 20 kg
	laboratory sample.
Laboratory sample	The smallest quantity of peanuts comminuted in a mill. The laboratory
	sample may be a portion of or the entire aggregate sample. If the
	aggregate sample is larger than 20 kg, a 20 kg laboratory sample should
	be removed in a random manner from the aggregate sample. The
	sample should be finely ground and mixed thoroughly using a process
	that approaches as complete a homogenisation as possible.
Test portion	A portion of the comminuted laboratory sample. The entire 20 kg
	laboratory sample should be comminuted in a mill. A portion of the
	comminuted 20 kg sample is randomly removed for the extraction of
	the aflatoxin for chemical analysis. Based upon grinder capacity, the 20
	kg aggregate sample can be divided into several equal sized samples, if
	all results are averaged.
	· · · · · · · · · · · · · · · · · · ·

A. DEFINITIONS

B. SAMPLING

Material to be sampled

- 3. Each lot, which is to be examined, must be sampled separately. Large lots should be subdivided into sublots to be sampled separately. The subdivision can be done following provisions laid down in Table 1 below.
- 4. Taking into account that the weight of the lot is not always an exact multiple of the weight of the sublots, the weight of the sublot may exceed the mentioned weight by a maximum of 20%.

Commodity	Lot weight – tonne (T)	Weight or number of sublots	Number of incremental samples	Laboratory sample weight (kg)
	≥ 500	100 tonnes	100	20
Deenuts	> 100 and < 500	5 sublots	100	20
Peanuts	\geq 25 and \leq 100	25 tonnes	100	20
	> 15 and <= 25	1 sublot	100	20

Table 1. Subdivision of large lots into sublots for sampling

Number of incremental samples for lots of less than 15 tonnes

5. The number of incremental samples to be taken depends on the weight of the lot, with a minimum of 10 and a maximum of 100. The figures in the following Table 2 may be used to determine the number of incremental samples to be taken. It is necessary that the total sample weight of 20 kg is achieved.

Table 2. Number of incremental samples to be taken depending on th	e weight
of the lot	

Lot weight tonnes – (T)	N° of incremental samples
T ≤ 1	10
$1 < T \leq 5$	40
$5 < T \le 10$	60
10 < T < 15	80

Incremental sample selection

- 6. Procedures used to take incremental samples from a peanut lot are extremely important. Every individual peanut in the lot should have an equal chance of being chosen. Biases will be introduced by the sample selection methods if equipment and procedures used to select the incremental samples prohibit or reduce the chances of any item in the lot from being chosen.
- 7. Since there is no way to know if the contaminated peanut kernels are uniformly dispersed throughout the lot, it is essential that the aggregate sample be the accumulation of many small portions or increments of the product selected from different locations throughout the lot. If the aggregate sample is larger than desired, it should be blended and subdivided until the desired laboratory sample size is achieved.

Static lots

- 8. A static lot can be defined as a large mass of peanuts contained either in a single large container such as a wagon, truck, or railcar or in many small containers such as sacks or boxes and the peanuts are stationary at the time a sample is selected. Selecting a truly random sample from a static lot can be difficult because the container may not allow access to all peanuts.
- 9. Taking a aggregate sample from a static lot usually requires the use of probing devices to select product from the lot. The probing devices used should be specially designed for the type of container. The probe should (1) be long enough to reach all product, (2) not restrict any item in the lot from being selected, and (3) not alter the items in the lot. As mentioned above, the aggregate sample should be a composite from many small increments of product taken from many different locations throughout the lot.
- 10. For lots traded in individual packages, the sampling frequency (SF), or number of packages that incremental samples are taken from, is a function of the lot weight (LT), incremental sample weight (IS), aggregate sample weight (AS) and the individual packing weight (IP), as follows:

Equation 1: $SF = (LT \times IS) / (AS \times IP)$

The sampling frequency (SF) is the number of packages sampled. All weights should be in the same mass units such as kg.

Dynamic lots

- 11. True random sampling can be more nearly achieved when selecting an aggregate sample from a moving stream of peanuts as, the lot is transferred, for example, by a conveyor belt from one location to another. When sampling from a moving stream, take small increments of product from the entire length of the moving stream; composite the peanuts to obtain an aggregate sample; if the aggregate sample is larger than the required laboratory sample, then blend and subdivide the aggregate sample to obtain the desired size laboratory sample.
- 12. Automatic sampling equipment such as cross-cut samplers are commercially available with timers that automatically pass a diverter cup through the moving stream at predetermined and uniform intervals. When automatic equipment is not available, a person can be assigned to manually pass a cup though the stream at periodic intervals to collect incremental samples. Whether using automatic or manual methods, small increments of peanuts should be collected and composited at frequent and uniform intervals throughout the entire time peanuts flow past the sampling point.
- 13. Cross-cut samplers should be installed in the following manner: (1) the plane of the opening of the diverter cup should be perpendicular to the direction of flow; (2) the diverter cup should pass through the entire cross sectional area of the stream; and (3) the opening of the diverter cup should be wide enough to accept all items of interest in the lot. As a general rule, the width of the diverter cup opening should be about three times the largest dimensions of the items in the lot.
- 14. The size of the aggregate sample (S) in kg, taken from a lot by a cross cut sampler is:

Equation 2: $S = (D \times LT) / (T \times V)$

D is the width of the diverter cup opening (in cm), LT is the lot size (in kg), T is interval or time between cup movement through the stream (in seconds), and V is cup velocity (in cm/sec).

15. If the mass flow rate of the moving stream, MR (kg/sec), is known, then the sampling frequency (SF), or number of cuts made by the automatic sampler cup is:

Equation 3: $SF = (S \times V) / (D \times MR)$

16. Equation 2 can also be used to compute other terms of interest such as the time between cuts (T). For example, the required time (T) between cuts of the diverter cup to obtain a 20 kg aggregate sample from a 30 000 kg lot where the diverter cup width is 5.08 cm (2 inches), and the cup velocity through the stream 30 cm/sec. Solving for T in Equation 2.

 $T = (5.08 \text{ cm x } 30\ 000 \text{ kg}) / (20 \text{ kg x } 30 \text{ cm/sec}) = 254 \text{ sec}$

17. If the lot is moving at 500 kg per minute, the entire lot will pass through the sampler in 60 minutes and only 14 cuts (14 incremental samples) will be made by the cup through the lot. This may be considered too infrequent in that too much product passes through the sampler between the time the cup cuts through the stream.

Weight of the incremental sample

18. The weight of the incremental sample should be approximately 200 g or greater, depending on the total number of increments, to obtain an aggregate sample of 20 kg.

Packaging and transmission of samples

19. Each laboratory sample shall be placed in a clean, inert container offering adequate protection from contamination and against damage in transit. All necessary precautions shall be taken to avoid any change in composition of the laboratory sample which might arise during transportation or storage.

Sealing and labelling of samples

20. Each laboratory sample taken for official use shall be sealed at the place of sampling and identified. A record must be kept of each sampling, permitting each lot to be identified unambiguously and giving the date and place of sampling together with any additional information likely to be of assistance to the analyst.

C. SAMPLE PREPARATION

Precautions

21. Daylight should be excluded as much as possible during the procedure, since aflatoxin gradually breaks down under the influence of ultra-violet light.

Homogenisation – Grinding

- 22. As the distribution of aflatoxin is extremely non-homogeneous, samples should be prepared and especially homogenised with extreme care. All laboratory sample obtained from aggregate sample is to be used for the homogenisation/grinding of the sample.
- 23. The sample should be finely ground and mixed thoroughly using a process that approaches as complete a homogenisation as possible.

24. The use of a hammer mill with a #14 screen (3.1 mm diameter hole in the screen) has been proven to represent a compromise in terms of cost and precision. A better homogenisation (finer grind – slurry) can be obtained by more sophisticated equipment, resulting in a lower sample preparation variance.

Test portion

25. A minimum test portion size of 100 g taken from the laboratory sample.

D. ANALYTICAL METHODS

Background

26. A criteria-based approach, whereby a set of performance criteria is established with which the analytical method used should comply, is appropriate. The criteria-based approach has the advantage that, by avoiding setting down specific details of the method used, developments in methodology can be exploited without having to reconsider or modify the specified method. The performance criteria established for methods should include all the parameters that need to be addressed by each laboratory such as the detection limit, repeatability coefficient of variation, reproducibility coefficient of variation, and the percent recovery necessary for various statutory limits. Utilising this approach, laboratories would be free to use the analytical method most appropriate for their facilities. Analytical methods that are accepted by chemists internationally (such as AOAC) may be used. These methods are regularly monitored and improved depending upon technology.

Performance criteria for methods of analysis

Criterion	Concentration Range	Recommended Value	Maximum Permitted Value
Blanks	All	Negligible	-
Recovery-Aflatoxins Total	1 – 15 μg/kg	70 to 110%	
	> 15 µg/kg	80 to 110%	
Precision RSD _R	All	As derived from Horwitz Equation	2 x value derived from Horwitz Equation
Precision RSDr may be	calculated as 0.66 times F	recision RSD _R at the con-	centration of interest

Table 3. Specific requirements with which methods of analysis should comply

- The detection limits of the methods used are not stated as the precision values are given at the concentrations of interest;
- The precision values are calculated from the Horwitz equation, i.e.:

 $RSD_R = 2^{(1-0.5logC)}$

where:

- * RSD_R is the relative standard deviation calculated from results generated under reproducibility conditions [(Sr / x) x 100]
- * C is the concentration ratio (i.e. 1 = 100 g/100 g, 0.001 = 1 000 mg/kg)
- 27. This is a generalised precision equation, which has been found to be independent of analyte and matrix but solely dependent on concentration for most routine methods of analysis.

SAMPLING PLANS FOR AFLATOXIN CONTAMINATION IN READY-TO-EAT TREENUTS AND TREENUTS DESTINED FOR FURTHER PROCESSING: ALMONDS, HAZELNUTS, PISTACHIOS AND SHELLED BRAZIL NUTS

DEFINITIONS

Lot	An identifiable quantity of a food commodity delivered at one time and determined by the official to have common characteristics, such as origin, variety, type of packing, packer, consignor, or markings.
Sublot	Designated part of a larger lot in order to apply the sampling method on that designated part. Each sublot must be physically separate and identifiable.
Sampling plan	It is defined by an aflatoxin test procedure and an accept/reject limit. An aflatoxin test procedure consists of three steps: sample selection, sample preparation and aflatoxin quantification. The accept/reject limit is a tolerance usually equal to the Codex maximum level.
Incremental sample	The quantity of material taken from a single random place in the lot or sublot.
Aggregate sample	The combined total of all the incremental samples that is taken from the lot or sublot. The aggregate sample has to be at least as large as the laboratory sample or samples combined.
Laboratory sample	The smallest quantity of tree nuts comminuted in a mill. The laboratory sample may be a portion of or the entire aggregate sample. If the aggregate sample is larger than the laboratory sample(s), the laboratory sample(s) should be removed in a random manner from the aggregate sample.
Test portion	A portion of the comminuted laboratory sample. The entire laboratory sample should be comminuted in a mill. A portion of the comminuted laboratory sample is randomly removed for the extraction of the aflatoxin for chemical analysis.
Ready-to-eat treenuts	Nuts, which are not intended to undergo an additional processing/treatment that has proven to reduce levels of aflatoxins before being used as an ingredient in foodstuffs, otherwise processed or offered for human consumption.
Treenuts destined for further processing	Nuts, which are intended to undergo an additional processing/treatment that has proven to reduce levels of aflatoxins before being used as an ingredient in foodstuffs, otherwise processed or offered for human consumption. Processes that have proven to reduce levels of aflatoxins are shelling, blanching followed by colour sorting, and sorting by specific gravity and colour (damage). There is some evidence that roasting reduces aflatoxins in pistachios but for other nuts the evidence is still to be supplied.
Operating characteristic	A plot of the probability of a accepting a lot versus lot concentration when using a specific sampling plan design. The OC curve provides an estimate of good lots rejected (exporter's risk) and bad lots accepted (importer's

(OC) curve rist	sk) by a specific aflatoxin	sampling plan design.
-----------------	-----------------------------	-----------------------

SAMPLING PLAN DESIGN CONSIDERATIONS

- 1. Importers may commercially classify treenuts as either "ready-to-eat" (RTE) or "destined for further processing" (DFP). As a result, maximum levels and sampling plans are proposed for both commercial types of treenuts. Maximum levels need to be defined for treenuts destined for further processing and ready-to-eat treenuts before a final decision can be made about a sampling plan design.
- 2. Treenuts can be marketed either as in-shell or shelled nuts. For example, pistachios are predominately marketed as in-shell nuts while almonds are predominately marketed as shelled nuts.
- 3. Sampling statistics, shown in Annex, are based upon the uncertainty and aflatoxin distribution among laboratory samples of shelled nuts. Because the shelled nut count per kg is different for each of the treenuts, the laboratory sample size is expressed in number of nuts for statistical purposes. However, the shelled nut count per kg for each treenut, shown in Annex, can be used to convert laboratory sample size from number of nuts to mass and vice versa.
- 4. Uncertainty estimates associated with sampling, sample preparation, and analysis, shown in Annex, and the negative binomial distribution are used to calculate operating characteristic (OC) curves that describe the performance of the proposed aflatoxin-sampling plans.
- 5. In Annex, the analytical variance reflects a reproducibility relative standard deviation of 22%, which is based upon Food Analysis Performance Assessment Scheme (FAPAS) data. A relative standard deviation of 22% is considered by FAPAS as an appropriate measure of the best agreement that can be reliably obtained between laboratories. An analytical uncertainty of 22% is larger than the within laboratory variation measured in the sampling studies for the four treenuts.
- 6. The issue of correcting the analytical test result for recovery is not addressed in this document. However, Table 2 specifies several performance criteria for analytical methods including suggestions for the range of acceptable recovery rates.

AFLATOXIN TEST PROCEDURE AND MAXIMUM LEVELS

- 7. An aflatoxin-sampling plan is defined by an aflatoxin test procedure and a maximum level. A value for the maximum level and the aflatoxin test procedure are given below in this section.
- 8. The maximum levels for total aflatoxins in treenuts (almonds, hazelnuts, pistachios and shelled Brazil nuts) "ready-to-eat" and "destined for further processing" are 10 and 15 μ g/kg, respectively.
- 9. Choice of the number and size of the laboratory sample is a compromise between minimizing risks (false positives and false negatives) and costs related to sampling and restricting trade. For simplicity, it is recommended that the proposed aflatoxin sampling plans use a 20 kg aggregate sample for all four treenuts.
- 10. The two sampling plans (RTE and DFP) have been designed for enforcement and controls concerning total aflatoxins in bulk consignments (lots) of treenuts traded in the export market.

Treenuts destined	for further p	rocessing
Maximum level	_	15 μg/kg total aflatoxins
Number of laboratory	samples –	1
Laboratory sample siz	e –	20 kg
Almonds –	shelled nuts	
Hazelnuts –	shelled nuts	
Pistachios –		s (equivalent to about 10 kg shelled nuts that is a the basis of the actual edible portion in the sample)
Brazil nuts –	shelled nuts	
Sample preparation -		sample shall be finely ground and mixed thoroughly using a process, e.g., dry grind with a vertical cutter mixer type mill, that has been demonstrated to provide the lowest sample preparation variance. Preferably, Brazil nuts should be ground as slurry.
Analytical method	_	performance based (see Table 2)
Decision rule		If the aflatoxin test result is less than or equal to 15 μ g/kg total aflatoxins, then accept the lot. Otherwise, reject the lot.
Ready-to-eat treenut	8	
Maximum level	_	10 μg/kg total aflatoxins
Number of laboratory	samples –	2
Laboratory sample siz		
	e –	10 kg
Almonds-		10 kg
Almonds– Hazelnuts –	shelled nuts	10 kg
	shelled nuts shelled nuts in-shell nuts	10 kg (equivalent to about 5 kg shelled nuts per test sample lated on the basis of the actual edible portion in the
Hazelnuts –	shelled nuts shelled nuts in-shell nuts that is calcu	(equivalent to about 5 kg shelled nuts per test sample
Hazelnuts – Pistachios –	shelled nuts shelled nuts in-shell nuts that is calcu sample)	(equivalent to about 5 kg shelled nuts per test sample
Hazelnuts – Pistachios – Brazil nuts –	shelled nuts shelled nuts in-shell nuts that is calcu sample)	(equivalent to about 5 kg shelled nuts per test sample lated on the basis of the actual edible portion in the sample shall be finely ground and mixed thoroughly using a process, e.g., dry grind with a vertical cutter mixer type mill, that has been demonstrated to provide the lowest sample preparation variance.

11. To assist member countries implement these two sampling plans, sample selection methods, sample preparation methods, and analytical methods required to quantify aflatoxin in laboratory samples taken from bulk treenut lots are described in the following sections.

SAMPLE SELECTION

MATERIAL TO BE SAMPLED

- 12. Each lot, which is to be examined for aflatoxin, must be sampled separately. Lots larger than 25 tonnes should be subdivided into sublots to be sampled separately. If a lot is greater than 25 tonnes, the number of sublots is equal to the lot weight in tonnes divided by 25 tonnes. It is recommended that a lot or a sublot should not exceed 25 tonnes. The minimum lot weight should be 500 kg.
- 13. Taking into account that the weight of the lot is not always an exact multiple of 25 tonne sublots, the weight of the sublot may exceed the mentioned weight by a maximum of 25%.
- 14. Samples should be taken from the same lot, i.e. they should have the same batch code or at the very least the same best before date. Any changes, which would affect the mycotoxin content, the analytical determination or make the aggregate samples collected unrepresentative should be avoided. For example do not open packaging in adverse weather conditions or expose samples to excessive moisture or sunlight. Avoid cross-contamination from other potentially contaminated consignments nearby.
- 15. In most cases any truck or container will have to be unloaded to allow representative sampling to be carried out.

INCREMENTAL SAMPLE SELECTION

- 16. Procedures used to take incremental samples from a treenut lot are extremely important. Every individual nut in the lot should have an equal chance of being chosen. Biases will be introduced by sample selection methods if equipment and procedures used to select the incremental samples prohibit or reduce the chances of any item in the lot from being chosen.
- 17. Since there is no way to know if the contaminated treenut kernels are uniformly dispersed throughout the lot, it is essential that the aggregate sample be the accumulation of many small incremental samples of product selected from different locations throughout the lot. If the aggregate sample is larger than desired, it should be blended and subdivided until the desired laboratory sample size is achieved.

NUMBER OF INCREMENTAL SAMPLES FOR LOTS OF VARYING WEIGHT

- 18. The number and size of the laboratory sample(s) will not vary with lot (sublot) size. However, the number and size of the incremental samples will vary with lot (sublot) size.
- 19. The number of incremental samples to be taken from a lot (sublot) depends on the weight of the lot. Table 1 shall be used to determine the number of incremental samples to be taken from lots or sublots of various sizes below 25 tonnes. The number of incremental samples varies from a minimum of 10 and to a maximum of 100.

Lot or sublot weight ^b (T in tonnes)	Minimum number of incremental samples	Minimum incremental sample size ^c (g)	Minimum aggregate sample size (Kg)
T < 1	10	2 000	20
$1 \le T < 5$	25	800	20
$5 \le T < 10$	50	400	20
$10 \le T < 15$	75	267	20
15 ≤T	100	200	20

Table 1. Number and size of incremental samples composited for an aggregate
sample of 20 kg ^a as a function of lot (orsublot) weight

a / Minimum aggregate sample size = laboratory sample size of 20 kg

b / 1 Tonne

 $= 1 \ 000 \ \text{kg}$

c / Minimum incremental sample size = laboratory sample size (20 kg) / minimum number of incremental samples, i.e. for 0.5 < T < 1 tonne, 2 000 g = 20 000/10

WEIGHT OF THE INCREMENTAL SAMPLE

20. The suggested minimum weight of the incremental sample should be approximately 200 g for lots of 25 metric tonnes (25000 kg). The number and/or size of incremental samples will have to be larger than that suggested in Table 1 for lots sizes below 25000 kg in order to obtain an aggregate sample greater than or equal to the 20 kg laboratory sample.

STATIC LOTS

- 21. A static lot can be defined as a large mass of treenuts contained either in a large single container such as a wagon, truck or railcar or in many small containers such as sacks or boxes and the nuts are stationary at the time a sample is selected. Selecting a truly random sample from a static lot can be difficult because all containers in the lot or sublot may not be accessible.
- 22. Taking incremental samples from a static lot usually requires the use of probing devices to select product from the lot. The probing devices should be specifically designed for the commodity and type of container. The probe should (1) be long enough to reach all products, (2) not restrict any item in the lot from being selected, and (3) not alter the items in the lot. As mentioned above, the aggregate sample should be a composite from many small incremental samples of product taken from many different locations throughout the lot.
- 23. For lots traded in individual packages, the sampling frequency (SF), or number of packages that incremental samples are taken from, is a function of the lot weight (LT), incremental sample weight (IS), aggregate sample weight (AS) and the individual packing weight (IP), as follows:

Equation 1: $SF = (LT \times IS) / (AS \times IP)$

24. The sampling frequency (SF) is the number of packages sampled. All weights should be in the same mass units such as kg.

DYNAMIC LOTS

- 25. Representative aggregate samples can be more easily produced when selecting incremental samples from a moving stream of treenuts as the lot is transferred from one location to another. When sampling from a moving stream, take small incremental samples of product from the entire length of the moving stream; composite the incremental samples to obtain an aggregate sample; if the aggregate sample is larger than the required laboratory sample(s), then blend and subdivide the aggregate sample to obtain the desired size laboratory sample(s).
- 26. Automatic sampling equipment such as a cross-cut sampler is commercially available with timers that automatically pass a diverter cup through the moving stream at predetermined and uniform intervals. When automatic sampling equipment is not available, a person can be assigned to manually pass a cup through the stream at periodic intervals to collect incremental samples. Whether using automatic or manual methods, incremental samples should be collected and composited at frequent and uniform intervals throughout the entire time the nuts flow past the sampling point.
- 27. Cross-cut samplers should be installed in the following manner: (1) the plane of the opening of the diverter cup should be perpendicular to the direction of the flow; (2) the diverter cup should pass through the entire cross sectional area of the stream; and (3) the opening of the diverter cup should be wide enough to accept all items of interest in the lot. As a general rule, the width of the diverter cup opening should be about two to three times the largest dimensions of items in the lot.
- 28. The size of the aggregate sample (S) in kg, taken from a lot by a cross cut sampler is:

Equation 2: $S = (D \times LT) / (T \times V)$

where D is the width of the diverter cup opening (cm), LT is the lot size (kg), T is interval or time between cup movement through the stream (seconds), and V is cup velocity (cm/sec).

29. If the mass flow rate of the moving stream, MR (kg/sec), is known, then the sampling frequency (SF), or number of cuts made by the automatic sampler cup can be computed from Equation 3 as a function of S, V, D, and MR.

Equation 3: $SF = (S \times V) / (D \times MR)$

30. Equations 2 and 3 can also be used to compute other terms of interest such as the time between cuts (T). For example, the time (T) required between cuts of the diverter cup to obtain a 20 kg aggregate sample from a 20000 kg lot where the diverter cup width is 5.0 cm and the cup velocity through the stream 30 cm/sec. Solving for T in Equation 2.

 $T = (5.0 \text{ cm x } 20\ 000 \text{ kg}) / (20 \text{ kg x } 20 \text{ cm/sec}) = 250 \text{ sec.}$

31 If the lot is moving at 500 kg per minute, the entire lot will pass through the sampler in 40 minutes (2 400 sec) and only 9.6 cuts (9 incremental samples) will be made by the cup through the lot (Equation 3). This may be considered too infrequent, in that too much product (2 083.3 kg) passes through the sampler between the time the cup cuts through the stream.

PACKAGING AND TRANSPORTATION OF SAMPLES

32. Each laboratory sample shall be placed in a clean, inert container offering adequate protection from contamination, sunlight, and against damage in transit. All necessary precautions shall be taken to avoid any change in composition of the laboratory sample, which might arise during transportation or storage. Samples should be stored in a cool dark place.

SEALING AND LABELLING OF SAMPLES

33. Each laboratory sample taken for official use shall be sealed at the place of sampling and identified. A record must be kept of each sampling, permitting each lot to be identified unambiguously and giving the date and place of sampling together with any additional information likely to be of assistance to the analyst.

SAMPLE PREPARATION

PRECAUTIONS

34. Sunlight should be excluded as much as possible during sample preparation, since aflatoxin gradually breaks down under the influence of ultra-violet light. Also, environmental temperature and relative humidity should be controlled and not favour mould growth and aflatoxin formation.

HOMOGENISATION - GRINDING

- 35. As the distribution of aflatoxin is extremely non-homogeneous, laboratory samples should be homogenized by grinding the entire laboratory sample received by the laboratory. Homogenization is a procedure that reduces particle size and disperses the contaminated particles evenly throughout the comminuted laboratory sample.
- 36. The laboratory sample should be finely ground and mixed thoroughly using a process that approaches as complete homogenization as possible. Complete homogenization implies that particle size is extremely small and the variability associated with sample preparation (Annex I) approaches zero. After grinding, the grinder should be cleaned to prevent aflatoxin cross-contamination.
- 37. The use of vertical cutter mixer type grinders that mix and comminute the laboratory sample into a paste represent a compromise in terms of cost and fineness of grind or particle size reduction. A better homogenization (finer grind), such as a liquid slurry, can be obtained by more sophisticated equipment and should provide the lowest sample preparation variance.

TEST PORTION

- 38. The suggested weight of the test portion taken from the comminuted laboratory sample should be approximately 50 g. If the laboratory sample is prepared using a liquid slurry, the slurry should contain 50 g of nut mass.
- 39. Procedures for selecting the 50 g test portion from the comminuted laboratory sample should be a random process. If mixing occurred during or after the comminution process, the 50 g test portion can be selected from any location throughout the comminuted laboratory sample. Otherwise, the 50 g test portion should be the accumulation of several small portions selected throughout the laboratory sample.
- 40. It is suggested that three test portions be selected from each comminuted laboratory sample. The three test portions will be used for enforcement, appeal, and confirmation if needed.

ANALYTICAL METHODS

BACKGROUND

41. A criteria-based approach, whereby a set of performance criteria is established with which the analytical method used should comply, is appropriate. The criteria-based approach has the advantage that, by avoiding setting down specific details of the method used, developments in methodology can be exploited without having to reconsider or modify the specific method. The performance criteria established for methods should include all the parameters that need to be addressed by each laboratory such as the detection limit, repeatability coefficient of variation (within lab), reproducibility coefficient of variation (among lab), and the percent recovery necessary for various statutory limits. Analytical methods that are accepted by chemists internationally (such as AOAC, ISO) may be used. These methods are regularly monitored and improved depending upon technology.

PERFORMANCE CRITERIA FOR METHODS OF ANALYSIS

42. A list of criteria and performance levels are shown in Table 2. Utilizing this approach, laboratories would be free to use the analytical method most appropriate for their facilities.

Criterion	Concentration range (ng/g)	Recommended value	Maximum permitted value
Blanks	All	Negligible	n/a
Recovery	1 to 15	70 to 100%	n/a
Recovery	> 15	80 to 110%	n/a
Precision or relative standard deviation RSD _R (Reproducibility)	1 to 120	Equation 4	2 x value derived from Equation 4
	> 120	Equation 5	2 x value derived from Equation 5
Precision or relative standard deviation RSDr (Repeatability)	1 to 120	Calculated as 0.66 times Precision RSD _R	n/a
	> 120	Calculated as 0.66 times Precision RSDr	n/a

 Table 2. Specific requirements with methods of analysis should comply with

n/a = not applicable

43. The detection limits of the methods used are not stated. Only the precision values are given at the concentrations of interest. The precision values are calculated from equations 4 and 5.

Equation 4: RSD_R = 22.0 (for C \leq 120 µg/kg or c \leq 120 x 10⁻⁹)

Equation 5:
$$RSD_R = 2^{(1-0.5logc)}$$
 (for $C > 120 \ \mu g/kg$ or $c > 120 \ x \ 10^{-9}$)

where:

• RSD_R = the relative standard deviation calculated from results generated under reproducibility conditions

- RSDr = the relative standard deviation calculated from results generated under repeatability conditions = 0.66 RSD_{R}
- c = the aflatoxin concentration ratio (i.e. 1 = 100 g/100 g, 0.001 = 1 000 mg/kg)
- C = a flatoxin concentration or mass of a flatoxin to mass of treenuts (i.e. $\mu g/kg$)
- 44. Equations 4 and 5 are generalized precision equations, which have been found to be independent of analyte and matrix but solely dependent on concentration for most routine methods of analysis.
- 45. Results should be reported on the edible portion of the sample.

Uncertainty, as measured by the variance, associated with sampling, sample preparation, and analytical steps of the aflatoxin test procedure used to estimate aflatoxin in almonds, hazelnuts, pistachios and shelled Brazil nuts.

Sampling data for almonds, hazelnuts, pistachios and shelled Brazil nuts were supplied by the United States, Turkey, Iran and Brazil, respectively.

Sampling, sample preparation, and analytical variances associated with testing almonds, hazelnuts, pistachios and shelled Brazil nuts are shown in Table 1 below.

Test procedure	Almonds	Hazelnuts	Pistachios	Shelled Brazil nuts
Sampling ^{b,c}	$S_{s}^{2} = (7 730/ns)$ 5.759C ^{1.561}	$S_{s}^{2} = (10000/ns)$ 4.291C ^{1.609}	$S_{s}^{2} = 8000/ns)$ 7.913C ^{1.475}	$s_s^2 = (1 850/ns)$ 4.8616C ^{1.889}
Sample Prep ^d	$S_{sp}^2 = (100/nss)$ 0.170C ^{1.646}	$S^{2}_{sp} = (50/nss)$ 0.021C ^{1.545}	$S^{2}_{sp} = (25/nss)$ 2.334C ^{1.522}	$s_{ss}^2 = (50/nss)$ 0.0306C ^{0.632}
Analytical ^e	$S_a^2 = (1/na)$ 0.0484C ^{2.0}	$S_a^2 = (1/na)$ 0.0484C ^{2.0}	$S_a^2 = (1/na)$ 0.0484C ^{2.0}	experimental $s_a^2 =$ (1/n) 0.0164C ^{1.117} or FAPAS $s_a^2 =$ (1/n) 0.0484C ^{2.0}
Total variance	$S^2{}_s + S^2{}_{sp} + S^2{}_a$	$S^2{}_s + S^2{}_{sp} + S^2{}_a$	$S^2{}_s + S^2{}_{sp} + S^2{}_a$	$S^2{}_s + S^2{}_{sp} + S^2{}_a$

Table 1. Variancesa associated with the aflatoxin test procedure for each treenut

a/Variance = S^2 (s, sp, and a denote sampling, sample preparation, and analytical steps, respectively, of aflatoxin test procedure)

b/ ns = laboratory sample size in number of shelled nuts, nss =test portion size in grams, na = number of aliquots quantified by HPLC, and C = aflatoxin concentration in μ g/kg total aflatoxin.

- c/ Shelled nut count/kg for almonds, hazelnuts, pistachios and Brazil nuts is 773, 1 000, 1 600 and 185, respectively.
- d/ Sample preparation for almonds, hazelnuts, and pistachios reflect Hobart, Robot Coupe, Marjaan Khatman and Turrax type mills, respectively. Laboratory samples were dry ground into a paste for each treenut except for Brazil nut that were prepared as a slurry Brazil nut/water 1/1 w/w.
- e/ Analytical variances reflect FAPAS recommendation for upper limit of analytical reproducibility uncertainty. A relative standard deviation of 22%, which is based upon FAPAS data, is considered, as an appropriate measure of the best agreement that can be obtained between laboratories. An analytical uncertainty of 22% is larger than the within laboratory uncertainty measured in the sampling studies for the four treenuts.

Annex 3

SAMPLING PLAN FOR AFLATOXIN CONTAMINATION IN DRIED FIGS DEFINITIONS

Lot	An identifiable quantity of a food commodity delivered at one time and determined by the official to have common characteristics, such as origin, variety, type of packing, packer, consignor, or markings.
Sublot	Designated part of a larger lot in order to apply the sampling method on that designated part. Each sublot must be physically separate and identifiable.
Sampling plan	It is defined by an aflatoxin test procedure and an accept/reject level. An aflatoxin test procedure consists of three steps: sample selection of sample(s) of a given size, sample preparation and aflatoxin quantification. The accept/reject level is a tolerance usually equal to the Codex maximum level.
Incremental sample	The quantity of material taken from a single random place in the lot or sublot.
Aggregate sample	The combined total of all the incremental samples that is taken from the lot or sublot. The aggregate sample has to be at least as large as the laboratory sample or samples combined.
Laboratory sample	The smallest quantity of dried figs comminuted in a mill. The laboratory sample may be a portion of or the entire aggregate sample. If the aggregate sample is larger than the laboratory sample(s), the laboratory sample(s) should be removed in a random manner from the aggregate sample.
Test portion	A portion of the comminuted laboratory sample. The entire laboratory sample should be comminuted in a mill. A portion of the comminuted laboratory sample is randomly removed for the extraction of the aflatoxin for chemical analysis.
Ready-to-eat dried figs	Dried figs, which are not intended to undergo an additional processing/treatment that have proven to reduce levels of aflatoxin before being used as an ingredient in foodstuffs, otherwise processed or offered for human consumption.
Operating characteristic (OC) curve	A plot of the probability of accepting a lot versus lot concentration when using a specific sampling plan design. The OC curve also provides an estimate of good lots rejected (exporter's risk) and bad lots accepted (importer's risk) by a specific aflatoxin sampling plan design.

SAMPLING PLAN DESIGN CONSIDERATIONS

1. Importers commercially classify dried figs mostly as "ready-to-eat" (RTE). As a result, maximum levels and sampling plans are established only for ready-to-eat dried figs.

- 2. The performance of the sampling plan was computed using the variability and aflatoxin distribution among laboratory samples of dried figs taken from contaminated lots. Because the dried fig count per kg is different for different varieties of dried figs, the laboratory sample size is expressed in number of dried figs for statistical purposes. However, the dried fig count per kg for each variety of dried figs can be used to convert laboratory sample size from number of dried figs to mass and vice versa.
- 3. Uncertainty estimates (variances) associated with sampling, sample preparation, and analysis and the negative binomial distribution are used to calculate operating characteristic (OC) curves that describe the performance of the aflatoxin-sampling plans for dried figs.
- 4. The analytical variance measured in the sampling study reflects within laboratory variance and was replaced with an estimate of analytical variance reflects a reproducibility relative standard deviation of 22%, which is based upon Food Analysis Performance Assessment Scheme (FAPAS) data. A relative standard deviation of 22% is considered by FAPAS as an appropriate measure of the best agreement that can be reliably obtained between laboratories. An analytical uncertainty of 22% is larger than the within laboratory variation measured in the sampling studies for dried figs.
- 5. The issue of correcting the analytical test result for recovery is not addressed in this document. However, Table 2 specifies several performance criteria for analytical methods including suggestions for the range of acceptable recovery rates.

AFLATOXIN TEST PROCEDURE AND MAXIMUM LEVELS

- 6. An aflatoxin sampling plan is defined by an aflatoxin test procedure and a maximum level. A value for the maximum level and the aflatoxin test procedure are given below in this section.
- 7. The maximum level for "ready-to-eat" dried figs is 10 ng/g total aflatoxins.
- 8. Choice of the number and size of the laboratory sample is a compromise between minimizing risks (false positives and false negatives) and costs related to sampling and restricting trade. For simplicity, it is recommended that the aflatoxin sampling plan uses three 10 kg aggregate samples of dried figs.
- 9. The RTE sampling plan has been designed for enforcement and controls concerning total aflatoxins in bulk consignments (lots) of dried figs traded in the export market.

Maximum level	- 10 μg/kg total aflatoxins
Number of laboratory samples	- 3
Laboratory sample size	– 10 kg
Sample preparation	 water-slurry grind and a test portion that represents 55 g mass of dried figs
Analytical method	- performance based (see Table 2)
Decision rule	- If the aflatoxin test result is less than or equal to 10 μ g/kg total aflatoxins for all three 10 kg laboratory samples, then accept the lot. Otherwise, reject the lot.

10. To assist member countries implement the above sampling plan, sample selection methods, sample preparation methods, and analytical methods required to quantify

aflatoxin in laboratory samples taken from bulk dried fig lots are described in the following sections.

SAMPLE SELECTION

MATERIAL TO BE SAMPLED

- 11. Each lot, which is to be examined for aflatoxin, must be sampled separately. Lots larger than 15 tonnes should be subdivided into sublots to be sampled separately. If a lot is greater than 15 tonnes, the number of sublots is equal to the lot weight in tonnes divided by 15 tonnes. It is recommended that a lot or a sublot should not exceed 15 tonnes.
- 12. Taking into account that the weight of the lot is not always an exact multiple of 15 tonnes, the weight of the sublot may exceed the mentioned weight by a maximum of 25%.
- 13. Samples should be taken from the same lot, i.e. they should have the same batch code or at the very least the same best before date. Any changes, which would affect the mycotoxin content, the analytical determination or make the aggregate samples collected unrepresentative should be avoided. For example do not open packaging in adverse weather conditions or expose samples to excessive moisture or sunlight. Avoid cross-contamination from other potentially contaminated consignments nearby.
- 14. In most cases any truck or container will have to be unloaded to allow representative sampling to be carried out.

INCREMENTAL SAMPLE SELECTION

- 15. Procedures used to take incremental samples from a dried fig lot are extremely important. Every individual fig in the lot should have an equal chance of being chosen. Biases will be introduced by sample selection methods if equipment and procedures used to select the incremental samples prohibit or reduce the chances of any item in the lot from being chosen.
- 16. Since there is no way to know if the contaminated figs are uniformly dispersed throughout the lot, it is essential that the aggregate sample be the accumulation of many small incremental samples of product selected from different locations throughout the lot. If the aggregate sample is larger than desired, it should be blended and subdivided until the desired laboratory sample size is achieved.
- 17. For lots less than 10 tonnes, the size of the aggregate sample is reduced so that the aggregate sample size doesn't exceed a significant portion of the lot or sublot size.

NUMBER AND SIZE OF INCREMENTAL SAMPLES FOR LOTS OF VARYING WEIGHT

18. The number of incremental samples to be taken from a lot (sublot) depends on the weight of the lot. Table 1 shall be used to determine the number of incremental samples to be taken from lots or sublots of various sizes. The number of incremental samples varies from 10 to 100 for lots or sublots of various sizes.

Table 1. Number and size of incremental samples composited for an aggregatesample of 30 kga as a function of lot (or sublot) weight

Lot or sublot weightb (T in tonnes)	Minimum number of incremental samples	Minimum incremental sample sizec (g)	Minimum aggregate sample size (Kg)	Laboratory sample size (Kg)	Number of laboratory samples
$15.0 \ge T > 10.0$	100	300	30	10	3
$10.0 \ge T > 5.0$	80	300	24	8	3
$5.0 \ge T > 2.0$	60	300	18	9	2
$2.0 \ge T > 1.0$	40	300	12	6	2
$1.0 \ge T > 0.5$	30	300	9	9	1
$0.5 \ge T > 0.2$	20	300	6	6	1
$0.2 \ge T > 0.1$	15	300	4.5	4.5	1
0.1 ≥T	10	300	3	3	1

a/Minimum aggregate sample size = laboratory sample size of 30 kg for lots above 10

tonnes

b/ 1 Tonne = 1 000 kg

c/ Minimum incremental sample size = laboratory sample size (30 kg)/minimum number of incremental samples,

i.e. for $10 < T \le 15$ tonnes, $300 \text{ g} = 30 \ 000/100$

19. The suggested minimum weight of the incremental sample is 300 g for lots and sublots of various sizes.

STATIC LOTS

- 20. A static lot can be defined as a large mass of dried figs contained either in a large single container such as a wagon, truck or railcar or in many small containers such as sacks or boxes and the dried figs are stationary at the time a sample is selected. Selecting a truly random sample from a static lot can be difficult because all containers in the lot or sublot may not be accessible.
- 21. Taking incremental samples from a static lot usually requires the use of probing devices to select product from the lot. The probing devices should be specifically designed for the commodity and type of container. The probe should (1) be long enough to reach all products, (2) not restrict any item in the lot from being selected, and (3) not alter the items in the lot. As mentioned above, the aggregate sample should be a composite from many small incremental samples of product taken from many different locations throughout the lot.
- 22. For lots traded in individual packages, the sampling frequency (SF), or number of packages that incremental samples are taken from, is a function of the lot weight (LT), incremental sample weight (IS), aggregate sample weight (AS) and the individual packing weight (IP), as follows:

Equation 1: $SF = (LT \times IS) / (AS \times IP)$

23. The sampling frequency (SF) is the number of packages sampled. All weights should be in the same mass units such as kg.

DYNAMIC LOTS

- 24. Representative aggregate samples can be more easily produced when selecting incremental samples from a moving stream of dried figs as the lot is transferred from one location to another. When sampling from a moving stream, take small incremental samples of product from the entire length of the moving stream; composite the incremental samples to obtain an aggregate sample; if the aggregate sample is larger than the required laboratory sample(s), then blend and subdivide the aggregate sample to obtain the desired size laboratory sample(s).
- 25. Automatic sampling equipment such as a cross-cut sampler is commercially available with timers that automatically pass a diverter cup through the moving stream at predetermined and uniform intervals.

When automatic sampling equipment is not available, a person can be assigned to manually pass a cup through the stream at periodic intervals to collect incremental samples. Whether using automatic or manual methods, incremental samples should be collected and composited at frequent and uniform intervals throughout the entire time the figs flow past the sampling point.

- 26. Cross-cut samplers should be installed in the following manner: (1) the plane of the opening of the diverter cup should be perpendicular to the direction of the flow; (2) the diverter cup should pass through the entire cross sectional area of the stream; and (3) the opening of the diverter cup should be wide enough to accept all items of interest in the lot. As a general rule, the width of the diverter cup opening should be about two to three times the largest dimensions of items in the lot.
- 27. The size of the aggregate sample (S) in kg, taken from a lot by a cross cut sampler is:

Equation 2: $S = (D \times LT) / (T \times V)$

where D is the width of the diverter cup opening (cm), LT is the lot size (kg), T is interval or time between cup movement through the stream (seconds), and V is cup velocity (cm/sec).

28. If the mass flow rate of the moving stream, MR (kg/sec), is known, then the sampling frequency (SF), or number of cuts made by the automatic sampler cup can be computed from Equation 3 as a function of S, V, D, and MR.

Equation 3: $SF = (S \times V) / (D \times MR)$

29. Equations 2 and 3 can also be used to compute other terms of interest such as the time between cuts (T). For example, the time (T) required between cuts of the diverter cup to obtain a 30 kg aggregate sample from a 20000 kg lot where the diverter cup width is 5.0 cm and the cup velocity through the stream 20 cm/sec. Solving for T in Equation 2.

 $T = (5.0 \text{ cm x } 20\ 000 \text{ kg}) / (30 \text{ kg x } 20 \text{ cm/sec}) = 167 \text{ sec.}$

30. If the lot is moving at 500 kg per minute, the entire lot will pass through the sampler in 40 minutes (2400 sec) and only 14.4 cuts (14 incremental samples) will be made by the cup through the lot (Equation 3). This may be considered too infrequent, in that

too much product (1388.9 kg) passes through the sampler between the time the cup cuts through the stream.

PACKAGING AND TRANSPORTATION OF SAMPLES

31. Each laboratory sample shall be placed in a clean, inert container offering adequate protection from contamination, sunlight, and against damage in transit. All necessary precautions shall be taken to avoid any change in composition of the laboratory sample, which might arise during transportation or storage. Samples should be stored in a cool dark place.

SEALING AND LABELLING OF SAMPLES

32. Each laboratory sample taken for official use shall be sealed at the place of sampling and identified. A record must be kept of each sampling, permitting each lot to be identified unambiguously and giving the date and place of sampling together with any additional information likely to be of assistance to the analyst.

SAMPLE PREPARATION

PRECAUTIONS

33. Sunlight should be excluded as much as possible during sample preparation, since aflatoxin gradually breaks down under the influence of ultra-violet light. Also, environmental temperature and relative humidity should be controlled and not favour mould growth and aflatoxin formation.

HOMOGENISATION - GRINDING

- 34. As the distribution of aflatoxin is extremely non-homogeneous, the laboratory samples should be homogenized by grinding the entire laboratory sample received by the laboratory. Homogenization is a procedure that reduces particle size and disperses the contaminated particles evenly throughout the comminuted laboratory sample.
- 35. The laboratory sample should be finely ground and mixed thoroughly using a process that approaches as complete homogenization as possible. Complete homogenization implies that particle size is extremely small and the variability associated with sample preparation approaches zero. After grinding, the grinder should be cleaned to prevent aflatoxin cross-contamination.
- 36. The use of vertical cutter mixer type grinders that mix and comminute the laboratory sample into a paste represent a compromise in terms of cost and fineness of grind or particle size reduction. A better homogenization (finer grind), such as a liquid slurry, can be obtained by more sophisticated equipment and should provide the lowest sample preparation variance.

TEST PORTION

- 37. The suggested weight of the test portion taken from the comminuted laboratory sample should be approximately 50 g. If the laboratory sample is prepared using a liquid slurry, the slurry should contain 50 g of fig mass.
- 38. Procedures for selecting the 50 g test portion from the comminuted laboratory sample should be a random process. If mixing occurred during or after the comminution process, the 50 g test portion can be selected from any location throughout the

comminuted laboratory sample. Otherwise, the 50 g test portion should be the accumulation of several small portions selected throughout the laboratory sample.

39. It is suggested that three test portions be selected from each comminuted laboratory sample. The three test portions will be used for enforcement, appeal, and confirmation if needed.

ANALYTICAL METHODS

BACKGROUND

40. A criteria-based approach, whereby a set of performance criteria is established with which the analytical method used should comply, is appropriate. The criteria-based approach has the advantage that, by avoiding setting down specific details of the method used, developments in methodology can be exploited without having to reconsider or modify the specific analytical method. The performance criteria established for analytical methods should include all the parameters that need to be addressed by each laboratory such as the detection limit, repeatability coefficient of variation (within lab), reproducibility coefficient of variation (among lab), and the percent recovery necessary for various statutory limits. Analytical methods that are accepted by chemists internationally (such as AOAC) may be used. These methods are regularly monitored and improved depending upon technology.

PERFORMANCE CRITERIA FOR METHODS OF ANALYSIS

41. A list of criteria and performance levels are shown in Table 2. Utilizing this approach, laboratories would be free to use the analytical method most appropriate for their facilities.

Criterion	Concentration range (ng/g)	Recommended value	Maximum permitted value
Blanks	All	Negligible	n/a
Recovery	1 to 15	70 to 100%	n/a
Recovery	> 15	80 to 110%	n/a
Precision or relative standard deviation	1 to 120	Equation 4	2 x value derived from Equation 4
RSD _R (Reproducibility)	> 120	Equation 5	2 x value derived from Equation 5
Precision or relative standard deviation RSDr (Repeatability)	1 to 120	Calculated as 0.66 times Precision RSD _R	n/a
	> 120	Calculated as 0.66 times Precision RSDr	n/a

Table 2. Specific requirements with which methods of analysis should comply with

n/a = not applicable

^{42.} The detection limits of the methods used are not stated. Only the precision values are given at the concentrations of interest. The precision values (expressed as a%) are calculated from equations 4 and 5.

Equation 4: $RSD_R = 22.0$

Equation 5: $RSD_R = 45.25C^{-0.15}$

where:

- RSD_R = the relative standard deviation calculated from results generated under reproducibility conditions
- RSD_r = the relative standard deviation calculated from results generated under repeatability conditions = $0.66RSD_R$
- C = a flatoxin concentration or mass of a flatoxin to mass of dried figs (i.e. ng/g)
- 43. Equations 4 and 5 are generalized precision equations, which have been found to be independent of analyte and matrix but solely dependent on concentration for most routine methods of analysis.
- 44. Results should be reported on the sample.

UNCERTAINTY, AS MEASURED BY THE VARIANCE, ASSOCIATED WITH THE SAMPLING, SAMPLE PREPARATION, AND ANALYTICAL STEPS OF THE AFLATOXIN TEST PROCEDURE USED TO DETECT AFLATOXIN IN DRIED FIGS

45. The sampling, sample preparation, and analytical variances associated with the aflatoxin test procedure for dried figs are shown in Table 3.

Table 3. Variancesa associated with the aflatoxin test procedure for dried figs

Test Procedure Variances for Dried Figs		
Sampling ^{b,c}	$S_s^2 = (590/ns) 2.219C^{1.433}$	
Sample Prep ^d	$S_{sp}^2 = (55/nss) 0.01170C^{1.465}$	
Analytical ^e	$S_a^2 = (1/na) \ 0.0484 C^{2.0}$	
Total	$S^2_t = S^2s + S^2sp + S^2a$	

- a / Variance = S^2 (t, s, sp, and a denote total, sampling, sample preparation, and analytical steps, respectively, of aflatoxin test procedure)
- b / ns = laboratory sample size in number of dried figs, nss =test portion size in grams of fig mass, na = number of aliquots quantified by HPLC, and C = aflatoxin concentration in ng/g total aflatoxins

- c / Count/kg for dried figs averaged 59/kg
- d / Sample preparation variance reflects a water-slurry method and a test portion that reflects 55 g fig mass
- e / Analytical variances reflect FAPAS recommendation for upper limit of analytical reproducibility uncertainty. A relative standard deviation of 22% is based upon FAPAS data and considered as an appropriate measure of the best agreement that can

be obtained between laboratories. An analytical uncertainty of 22% is larger than the within laboratory uncertainty measured in the sampling studies for the three dried figs.

SAMPLING PLANS AND PERFORMANCE CRITERIA FOR DEOXYNIVALENOL (DON) IN CEREAL-BASED FOODS FOR INFANTS AND YOUNG CHILDREN; IN FLOUR, MEAL, SEMOLINA AND FLAKES DERIVED FROM WHEAT, MAIZE OR BARLEY; AND IN CEREAL GRAINS (WHEAT, MAIZE AND BARLEY) DESTINED FOR FURTHER PROCESSING

Cereal grains (wheat, maize and barley) destined for further processing

Maximum level	2000 μg/kg DON
Increments	increments of 100 g, depending on the lot weight (≥ 0.5 tonnes)
Sample preparation	dry grind with a suitable mill (particles smaller than 0.85 mm - 20 mesh)
Laboratory sample weight	$\geq 1 \text{ kg}$
Number of laboratory samples	1
Test portion	25 g test portion
Method	HPLC
Decision rule	If the DON-sample test result for the laboratory samples is equal or less than 2000 μ g/kg, accept the lot. Otherwise, reject the lot.

Cereal-based foods for infants and young children

Maximum level	200 µg/kg DON
Increments	10 x 100 g
Sample preparation	None
Laboratory sample weight	1 kg
Number of laboratory samples	1
Test portion	25 g test portion
Method	HPLC
Decision rule	If the DON sample test result is equal or less than 200 μ g/kg, accept the lot. Otherwise, reject the lot.

Flour, semolina, meal and flakes derived from wheat, maize or barley

Maximum level	1000 μg/kg DON
Increments	10 x 100 g
Sample preparation	None
Laboratory sample weight	1 kg

Number of laboratory samples	1
Test portion	25 g test portion
Method	HPLC
Decision rule	If the DON sample test result is equal or less than $1000 \mu g/kg$, accept the lot. Otherwise, reject the lot.

DEFINITIONS

Lot	An identifiable quantity of a food commodity delivered at one time and determined by the official to have common characteristics, such as origin, variety, type of packing, packer, consignor, or markings.
Sublot	Designated part of a larger lot in order to apply the sampling method on that designated part. Each sublot must be physically separate and identifiable.
Sampling plan	It is defined by a DON test procedure and an accept/reject level. A DON test procedure consists of three steps: sample selection, sample preparation and analysis or DON quantification. The accept/reject level is a tolerance usually equal to the Codex maximum level (ML).
Incremental sample	The quantity of material taken from a single random place in the lot or sublot.
Aggregate sample	The combined total of all the incremental samples that is taken from the lot or sublot. The aggregate sample has to be at least as large as the laboratory sample or samples combined.
Laboratory sample	The smallest quantity of shelled cereal comminuted in a mill. The laboratory sample may be a portion of or the entire aggregate sample. If the aggregate sample is larger than the laboratory sample(s), the laboratory sample(s) should be removed in a random manner from the aggregate sample in such a way to ensure that the laboratory sample is still representative of the sublot sampled.
Test portion	A portion of the comminuted laboratory sample. The entire laboratory sample should be comminuted in a mill. A portion of the comminuted laboratory sample is randomly removed for the extraction of the DON for chemical analysis.

SAMPLING PLAN DESIGN CONSIDERATIONS

MATERIAL TO BE SAMPLED

1. Each lot of cereal, which is to be examined for DON, must be sampled separately. Lots larger than 50 tonnes should be subdivided into sublots to be sampled separately. If a lot is greater than 50 tonnes, the lot should be subdivided into sublots according to Table 1.

Lot weight (t)	Maximum Weight or minimum number of sub lots	Number of incremental sample	Minimum laboratory Sample Weight (kg)
≥ 1500	500 tonnes	100	1
> 300 and < 1500	3 sublots	100	1
\geq 100 and \leq 300	100 tonnes	100	1
\geq 50 and < 100	2 sublots	100	1
< 50	-	3-100*	1

* see table 2

2. Taking into account that the weight of the lot is not always an exact multiple of the weight of sublots, the weight of the sublot may exceed the mentioned weight by a maximum of 20%.

INCREMENTAL SAMPLE

- 3. The suggested minimum weight of the incremental sample should be 100 grams for lots ≥ 0.5 tonnes.
- 4. For lots less than 50 tonnes, the sampling plan must be used with 3 to 100 incremental samples, depending on the lot weight. For very small lots (≤ 0.5 tonnes) a lower number of incremental samples may be taken, but the aggregate sample uniting all incremental samples shall be also in that case at least 1 kg. Table 2 may be used to determine the number of incremental samples to be taken.

Lot weight (t)	Number of incremental sample	Minimum Laboratory Sample Weight (kg)
≤ 0.05	3	1
$> 0.05 - \le 0.5$	5	1
> 0.5 - ≤ 1	10	1
> 1 - ≤ 3	20	1
> 3 - ≤ 10	40	1
> 10 - ≤ 20	60	1
> 20 - < 50	100	1

Table 2. Number of incremental samples to be taken depending on the weight of the lot of

STATIC LOTS

- 5. A static lot can be defined as a large mass of shelled cereal contained either in a large single container such as a wagon, truck or railcar or in many small containers such as sacks or boxes and the cereal is stationary at the time a sample is selected. Selecting a truly random sample from a static lot can be difficult because all containers in the lot or sublot may not be accessible.
- 6. Taking incremental samples from a static lot usually requires the use of probing devices to select product from the lot. The probing devices should be specifically designed for the commodity and type of container. The probe should (1) be long enough to reach all products, (2) not restrict any item in the lot from being selected, and (3) not alter the items in the lot. As mentioned above, the aggregate sample should be a composite from many small incremental samples of product taken from many different locations throughout the lot.
- 7. For lots traded in individual packages, the sampling frequency (SF), or number of packages that incremental samples are taken from, is a function of the lot weight (LT), incremental sample weight (IS), aggregate sample weight (AS) and the individual packing weight (IP), as follows:

 $SF = (LT \times IS)/(AS \times IP).$

8. The sampling frequency (SF) is the number of packages sampled. All weights should be in the same mass units such as kg.

DYNAMIC LOTS

- 9. Representative aggregate samples can be more easily produced when selecting incremental samples from a moving stream of shelled cereal as the lot is transferred from one location to another. When sampling from a moving stream, take small incremental samples of product from the entire length of the moving stream; composite the incremental samples to obtain an aggregate sample; if the aggregate sample is larger than the required laboratory sample(s), then blend and subdivide the aggregate sample to obtain the desired size laboratory sample(s).
- 10. Automatic sampling equipment such as a cross-cut sampler is commercially available with timers that automatically pass a diverter cup through the moving stream at predetermined and uniform intervals. When automatic sampling equipment is not available, a person can be assigned to manually pass a cup through the stream at periodic intervals to collect incremental samples. Whether using automatic or manual methods, incremental samples should be collected and composited at frequent and uniform intervals throughout the entire time the cereal flow past the sampling point.
- 11. Cross-cut samplers should be installed in the following manner: (1) the plane of the opening of the diverter cup should be perpendicular to the direction of the flow; (2) the diverter cup should pass through the entire cross sectional area of the stream; and (3) the opening of the diverter cup should be wide enough to accept all items of interest in the lot. As a general rule, the width of the diverter cup opening should be about two to three times the largest dimensions of items in the lot.
- 12. The size of the aggregate sample (S) in kg, taken from a lot by a cross cut sampler is: S=(D x LT) / (T x V),

where D is the width of the diverter cup opening (cm), LT is the lot size (kg), T is interval or time between cup movement through the stream (seconds), and V is cup velocity (cm/sec).

13. If the mass flow rate of the moving stream, MR (kg/sec), is known, then the sampling frequency (SF), or number of cuts made by the automatic sampler cup can be computed as a function of S, V, D, and MR.

 $SF = (S \times V) / (D \times MR).$

PACKAGING AND TRANSPORTATION OF SAMPLES

- 14. Each laboratory sample shall be placed in a clean, inert container offering adequate protection from contamination, sunlight, and against damage in transit. All necessary precautions shall be taken to avoid any change in composition of the laboratory sample, which might arise during transportation or storage. Samples should be stored in a cool dark place.
- 15. Each laboratory sample taken for official use shall be sealed at the place of sampling and identified. A record must be kept of each sampling, permitting each lot to be identified unambiguously and giving the date and place of sampling together with any additional information likely to be of assistance to the analyst.

SAMPLE PREPARATION

- 16. Sunlight should be excluded as much as possible during sample preparation, since DON may gradually break down under the influence of ultra-violet light. Also, environmental temperature and relative humidity should be controlled and not favour mould growth and DON formation.
- 17. As the distribution of DON is extremely non-homogeneous, laboratory samples should be homogenised by grinding the entire laboratory sample received by the laboratory. Homogenisation is a procedure that reduces particle size and disperses the contaminated particles evenly throughout the comminuted laboratory sample.
- 18. The laboratory sample should be finely ground and mixed thoroughly using a process that approaches as complete homogenisation as possible. Complete homogenisation implies that particle size is extremely small and the variability associated with sample preparation approaches zero. After grinding, the grinder should be cleaned to prevent DON cross-contamination.

TEST PORTION

- 19. The suggested weight of the test portion taken from the comminuted laboratory sample should be approximately 25 g
- 20. Procedures for selecting the test portion from the comminuted laboratory sample should be a random process. If mixing occurred during or after the comminuting process, the test portion can be selected from any location throughout the comminuted laboratory sample. Otherwise, the test portion should be the accumulation of several small portions selected throughout the laboratory sample.
- 21. It is suggested that three test portions be selected from each comminuted laboratory sample. The three test portions will be used for enforcement, appeal, and confirmation if needed.

ANALYTICAL METHODS

22. A criteria-based approach, whereby a set of performance criteria is established with which the analytical method used should comply, is appropriate. The criteria-based approach has the advantage that, by avoiding setting down specific details of the method used, developments in methodology can be exploited without having to reconsider or modify the specific method. A list of possible criteria and performance levels are shown in Table 3). Utilising this approach, laboratories would be free to use the analytical method most appropriate for their facilities.

Commodity	ML (mg/kg)	LOD (mg/kg)	LOQ (mg/kg)	Precision on HorRat	Minimum applicable range (mg/kg)	Recovery
Cereal grains (wheat, maize and barley) destined for further processing	2.0	≤ 0.2	≤ 0.4	≤2	1-3	80 - 110%
Cereal-based foods for infants and young children	0.2	≤ 0.02	≤ 0.04	≤ 2	0.1 - 0.3	80 - 110%
Flour, semolina, meal and flakes derived from wheat, maize or barley	1.0	≤ 0.1	≤ 0.2	≤ 2	0.5 - 1.5	80 - 110%

Table 3. Proposed method criteria for DON in cereals.

Annex 5

SAMPLING PLANS AND PERFORMANCE CRITERIA FOR FUMONISINS (FB1 + FB2) IN MAIZE GRAIN AND MAIZE FLOUR AND MAIZE MEAL

Maize grain, unprocessed

Maximum level	4 000 μg/kg FB1 + FB2
Increments	increments of 100 g, depending on the lot weight (≥ 0.5 tonnes)
Sample preparation	dry grind with a suitable mill (particles smaller than 0.85 mm - 20 mesh)
Laboratory sample weight	$\geq 1 \text{ kg}$
Number of laboratory samples	1
Test portion	25 g test portion
Method	HPLC
Decision rule	If the fumonisin-sample test result for the laboratory samples is equal or less than 4 000 μ g/kg, accept the lot. Otherwise, reject the lot.

Maize flour and maize meal

Maximum level	2 000 µg/kg FB1 + FB2
Increments	10 x 100 g
Sample preparation	None
Laboratory sample weight	$\geq 1 \text{ kg}$
Number of laboratory samples	1
Test portion	25 g test portion
Method	HPLC
Decision rule	If the fumonisin-sample test result is equal or less than 2000 μ g/kg, accept the lot. Otherwise, reject the lot.

DEFINITION

Lot	An identifiable quantity of a food commodity delivered at one time and determined by the official to have common characteristics, such as origin, variety, type of packing, packer, consignor, or markings.	
Sublot	The designated part of a larger lot in order to apply the sampling method on that designated part. Each sublot must be physically separate and identifiable.	
Sampling plan	It is defined by a fumonisin test procedure and an accept/reject level. A fumonisin test procedure consists of three steps: sample selection, sample preparation and analysis or fumonisin	

	quantification. The accept/reject level is a tolerance usually equal to the Codex maximum level (ML).
Incremental sample	The quantity of material taken from a single random place in the lot or sublot.
Aggregate sample	The combined total of all the incremental samples that is taken from the lot or sublot. The aggregate sample has to be at least as large as the laboratory sample or samples combined.
Laboratory sample	The smallest quantity of shelled maize comminuted in a mill. The laboratory sample may be a portion of or the entire aggregate sample. If the aggregate sample is larger than the laboratory sample(s), the laboratory sample(s) should be removed in a random manner from the aggregate sample in such a way to ensure that the laboratory sample is still representative of the sublot sampled.
Test portion	A portion of the comminuted laboratory sample. The entire laboratory sample should be comminuted in a mill. A portion of the comminuted laboratory sample is randomly removed for the extraction of the fumonisin for chemical analysis.

SAMPLING PLAN DESIGN CONSIDERATIONS

MATERIAL TO BE SAMPLED

 Each lot of maize, which is to be examined for fumonisin, must be sampled separately. Lots larger than 50 tonnes should be subdivided into sublots to be sampled separately. If a lot is greater than 50 tonnes, the lot should be subdivided into sublots according to Table 1.

Lot weight (t)	Maximum weight or minimum number of sub lots	Number of incremental sample	Minimum laboratory sample weight (kg)
≥ 1500	500 tonnes	100	1
> 300 and < 1500	3 sublots	100	1
\geq 100 and \leq 300	100 tonnes	100	1
\geq 50 and < 100	2 sublots	100	1
< 50	-	3-100*	1

Table 1. Subdivision of maize sublots according to lot weight

* see table 2

2. Taking into account that the weight of the lot is not always an exact multiple of the weight of sublots, the weight of the sublot may exceed the mentioned weight by a maximum of 20%.

INCREMENTAL SAMPLE

3. The suggested minimum weight of the incremental sample should be 100 grams for lots ≥ 0.5 tonnes.

4. For lots less than 50 tonnes, the sampling plan must be used with 3 to 100 incremental samples, depending on the lot weight. For very small lots (≤ 0.5 tonnes) a lower number of incremental samples may be taken, but the aggregate sample uniting all incremental samples shall be also in that case at least 1 kg. Table 2 may be used to determine the number of incremental samples to be taken.

Lot weight (t)	Number of incremental sample	Minimum laboratory sample weight (kg)
≤ 0.05	3	1
> 0.05 - ≤ 0.5	5	1
$> 0.5 - \le 1$	10	1
> 1 - ≤ 3	20	1
$> 3 - \le 10$	40	1
$> 10 - \le 20$	60	1
> 20 - < 50	100	1

Table 2. Number of incremental samples to be taken depending on the weight of the lot

STATIC LOTS

- 5. A static lot can be defined as a large mass of shelled maize contained either in a large single container such as a wagon, truck or railcar or in many small containers such as sacks or boxes and the maize is stationary at the time a sample is selected. Selecting a truly random sample from a static lot can be difficult because all containers in the lot or sublot may not be accessible.
- 6. Taking incremental samples from a static lot usually requires the use of probing devices to select product from the lot. The probing devices should be specifically designed for the commodity and type of container. The probe should (1) be long enough to reach all products, (2) not restrict any item in the lot from being selected, and (3) not alter the items in the lot. As mentioned above, the aggregate sample should be a composite from many small incremental samples of product taken from many different locations throughout the lot.
- 7. For lots traded in individual packages, the sampling frequency (SF), or number of packages that incremental samples are taken from, is a function of the lot weight (LT), incremental sample weight (IS), aggregate sample weight (AS) and the individual packing weight (IP), as follows:

 $SF = (LT \times IS)/(AS \times IP).$

8. The sampling frequency (SF) is the number of packages sampled. All weights should be in the same mass units such as kg.

DYNAMIC LOTS

9. Representative aggregate samples can be more easily produced when selecting incremental samples from a moving stream of shelled maize as the lot is transferred

from one location to another. When sampling from a moving stream, take small incremental samples of product from the entire length of the moving stream; composite the incremental samples to obtain an aggregate sample; if the aggregate sample is larger than the required laboratory sample(s), then blend and subdivide the aggregate sample to obtain the desired size laboratory sample(s).

- 10. Automatic sampling equipment such as a cross-cut sampler is commercially available with timers that automatically pass a diverter cup through the moving stream at predetermined and uniform intervals. When automatic sampling equipment is not available, a person can be assigned to manually pass a cup through the stream at periodic intervals to collect incremental samples. Whether using automatic or manual methods, incremental samples should be collected and composited at frequent and uniform intervals throughout the entire time the maize flow past the sampling point.
- 11. Cross-cut samplers should be installed in the following manner: (1) the plane of the opening of the diverter cup should be perpendicular to the direction of the flow; (2) the diverter cup should pass through the entire cross sectional area of the stream; and (3) the opening of the diverter cup should be wide enough to accept all items of interest in the lot. As a general rule, the width of the diverter cup opening should be about two to three times the largest dimensions of items in the lot.
- 12. The size of the aggregate sample (S) in kg, taken from a lot by a cross cut sampler is:

 $S=(D \times LT) / (T \times V),$

where D is the width of the diverter cup opening (cm), LT is the lot size (kg), T is interval or time between cup movement through the stream (seconds), and V is cup velocity (cm/sec).

13. If the mass flow rate of the moving stream, MR (kg/sec), is known, then the sampling frequency (SF), or number of cuts made by the automatic sampler cup can be computed as a function of S, V, D, and MR.

 $SF = (S \times V) / (D \times MR).$

PACKAGING AND TRANSPORTATION OF SAMPLES

- 14. Each laboratory sample shall be placed in a clean, inert container offering adequate protection from contamination, sunlight, and against damage in transit. All necessary precautions shall be taken to avoid any change in composition of the laboratory sample, which might arise during transportation or storage. Samples should be stored in a cool dark place.
- 15. Each laboratory sample taken for official use shall be sealed at the place of sampling and identified. A record must be kept of each sampling, permitting each lot to be identified unambiguously and giving the date and place of sampling together with any additional information likely to be of assistance to the analyst.

SAMPLE PREPARATION

16. Sunlight should be excluded as much as possible during sample preparation, since fumonisin may gradually break down under the influence of ultra-violet light. Also, environmental temperature and relative humidity should be controlled and not favor mold growth and fumonisin formation.

- 17. As the distribution of fumonisin is extremely non-homogeneous, laboratory samples should be homogenised by grinding the entire laboratory sample received by the laboratory. Homogenisation is a procedure that reduces particle size and disperses the contaminated particles evenly throughout the comminuted laboratory sample.
- 18. The laboratory sample should be finely ground and mixed thoroughly using a process that approaches as complete homogenisation as possible. Complete homogenisation implies that particle size is extremely small and the variability associated with sample preparation approaches zero. After grinding, the grinder should be cleaned to prevent fumonisin cross-contamination.

TEST PORTION

- 19. The suggested weight of the test portion taken from the comminuted laboratory sample should be approximately 25 g
- 20. Procedures for selecting the test portion from the comminuted laboratory sample should be a random process. If mixing occurred during or after the comminuting process, the test portion can be selected from any location throughout the comminuted laboratory sample. Otherwise, the test portion should be the accumulation of several small portions selected throughout the laboratory sample.
- 21. It is suggested that three test portions be selected from each comminuted laboratory sample. The three test portions will be used for enforcement, appeal, and confirmation if needed.

ANALYTICAL METHODS

22. A criteria-based approach, whereby a set of performance criteria is established with which the analytical method used should comply, is appropriate. The criteria-based approach has the advantage that, by avoiding setting down specific details of the method used, developments in methodology can be exploited without having to reconsider or modify the specific method. A list of possible criteria and performance levels are shown in Table 3). Utilising this approach, laboratories would be free to use the analytical method most appropriate for their facilities.

Table 3. Performance criteria for Fumonisin B1+ B2.

Analyte	ML (mg/Kg)	LOD (mg/Kg)	LOQ (mg/Kg)	RSD _R	Recovery (%)
FB1 + FB2	4.0	-	-	-	-
FB1		≤ 0.3*	$\leq 0.6*$	HorRat ≤ 2	80 - 110
				(< 27%)	
FB2		≤ 0.15 *	≤ 0.3*	HorRat ≤ 2	80 - 110
				(< 32%)	

Maize Grain

* - The LOD and LOQ were derived based upon typical B1:B2 ratio of 5:2 in naturallycontaminated samples

Maize Flour/Meal

Analyte	ML (mg/Kg)	LOD (mg/Kg)	LOQ (mg/Kg)	RSDR	Recovery (%)
---------	------------	-------------	-------------	------	--------------

FB1 + FB2	2.0	-	-	-	-
FB1		≤ 0.15 *	≤ 0.3*	HorRat ≤ 2	80 - 110
				(< 30%)	
FB2		≤ 0.06*	≤ 0.15 *	HorRat ≤ 2	80 - 110
				(< 34%)	

* - The LOD and LOQ were derived based upon typical B1:B2 ratio of 5:2 in naturallycontaminated samples

Reference:

- General Standard For Contaminants And Toxins In Food And Feed Codex Stan 193-1995
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs