Bitumen and Bituminous binders – Part 5: Performance graded bitumen -- Specifications
National foreword

Uganda National Bureau of Standards (UNBS) is a parastatal under the Ministry of Trade, Industry and Cooperatives established under Cap 327, of the Laws of Uganda, as amended. UNBS is mandated to coordinate the elaboration of standards and is
(a) a member of International Organisation for Standardisation (ISO) and
(b) a contact point for the WHO/FAO Codex Alimentarius Commission on Food Standards, and
(c) the National Enquiry Point on TBT Agreement of the World Trade Organisation (WTO).

The work of preparing Uganda Standards is carried out through Technical Committees. A Technical Committee is established to deliberate on standards in a given field or area and consists of representatives of consumers, traders, academicians, manufacturers, government and other stakeholders.

Draft Uganda Standards adopted by the Technical Committee are widely circulated to stakeholders and the general public for comments. The committee reviews the comments before recommending the draft standards for approval and declaration as Uganda Standards by the National Standards Council.

This Draft Uganda Standard, DUS DEAS 982-5: 2019, Bitumen and Bituminous binders – Part 5: Performance graded bitumen -- Specifications, is identical with and has been reproduced from an International Standard, DEAS 982-5: 2019, Bitumen and Bituminous binders – Part 5: Performance graded bitumen -- Specifications, and is being proposed for adoption as a Uganda Standard.

The committee responsible for this document is Technical Committee UNBS/TC 3, Building and construction.

Wherever the words, “East African Standard” appear, they should be replaced by “Uganda Standard.”
Bitumen and Bituminous binders -- Part 5: Performance graded bitumen -- Specifications
Copyright notice

This EAC document is copyright-protected by EAC. While the reproduction of this document by participants in the EAC standards development process is permitted without prior permission from EAC, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from EAC.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to EAC’s member body in the country of the requester:

© East African Community 2017 — All rights reserved
East African Community
P.O.Box 1096
Arusha
Tanzania
Tel: 255 27 2504253/8
Fax: 255 27 2504481/2504255
E-mail: eac@eachq.org
Web: www.eac-quality.net

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. Violators may be persecuted.
Foreword

Development of the East African Standards has been necessitated by the need for harmonizing requirements governing quality of products and services in the East African Community. It is envisaged that through harmonized standardization, trade barriers that are encountered when goods and services are exchanged within the Community will be removed.

The Community has established an East African Standards Committee (EASC) mandated to develop and issue East African Standards (EAS). The Committee is composed of representatives of the National Standards Bodies in Partner States, together with the representatives from the public and private sector organizations in the community.

East African Standards are developed through Technical Committees that are representative of key stakeholders including government, academia, consumer groups, private sector and other interested parties. Draft East African Standards are circulated to stakeholders through the National Standards Bodies in the Partner States. The comments received are discussed and incorporated before finalization of standards, in accordance with the Principles and procedures for development of East African Standards.

East African Standards are subject to review, to keep pace with technological advances. Users of the East African Standards are therefore expected to ensure that they always have the latest versions of the standards they are implementing.

The committee responsible for this document is Technical Committee EASC/TC 021, Building and Civil Engineering.

Attention is drawn to the possibility that some of the elements of this document may be subject of patent rights. EAC shall not be held responsible for identifying any or all such patent rights.
Bitumen and Bituminous binders — Performance graded bitumen—Specifications

1 Scope

This Draft East African Standard specifies requirements and test methods for performance graded bitumen suitable for pavement construction.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ASTMD8, Terminology relating to materials for roads and pavements
ASTMD92, Test Method for flash and fire points by cleveland open cup tester
ASTMD95, Test Method for water in petroleum products and bituminous materials by distillation
ASTMD140, Practice for sampling bituminous materials
ASTMD2042, Test method for solubility of asphalt materials in trichloroethylene
ASTMD2170, Test method for kinematic viscosity of asphalts (bitumens)
ASTMD2171, Test method for viscosity of asphalts by vacuum capillary viscometer
ASTMD2872, Test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test)
ASTMD3381, specification for viscosity-graded asphalt cement for use in pavement construction
ASTMD4402, Test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer
ASTMD5546, Test method for solubility of asphalt binders in toluene by centrifuge
3 Definitions and Abbreviations

3.1 Definitions
Definition of term specific to this East African Standard.

3.1.1 binder
an asphalt-based cement that is produced from petroleum residue either with or without the addition of modifiers.

3.2 Abbreviation
AASHTO: American Association of State Highway and Transportation Officials
ASTM: American Society for Testing and Materials
EN: EUROPEEN DE NORMALISATION (European standard)
PG: Performance grade

4 Requirements

4.1 Ordering Information
4.1.1 The performance graded asphalt binder shall conform to the requirements prescribed in table 1 or table 2. Table 2 incorporates Practice ASTM D6816 for determining the critical low cracking temperature using a combination of test method ASTM D6648 and test method ASTM D6723 test procedures. If no table is specified, the default is table 1.
4.1.2 When ordering under this specification, include in the purchase order the performance grade (PG) of asphalt binder required and the table used (for example, PG 52-16, table 1 or PG 64-34, table 2). If no table is specified, the default is table 1.

4.2 Materials and manufacture

4.2.1 Asphalt binder shall be prepared by the refining of crude petroleum, by suitable methods, with or without the addition of modifiers.

4.2.2 Modifiers may be any materials of suitable manufacture that are used in original/natural or recycled condition, and that are capable of being dissolved, dispersed or reacted in asphalt binder with the objective of improving its performance.

**NOTE 1** — This specification is not intended to address the grading of asphalt binders containing particulate or fibrous materials larger than 250 µm in size.

4.2.3 The asphalt binder shall be homogeneous, free from water and deleterious materials, and shall not foam when heated to 175 °C.

4.2.4 The asphalt binder shall be at least 99.0 % soluble, as determined by test methods ASTM D2042, ASTM D7553, or ASTM D5546. Any insoluble component shall be substantially free of fibers.

4.2.5 The grades of asphalt binder shall conform to the requirements given in table 1 or table 2.

**NOTE 2** — Conformance with all of the parameters of this specification is not a guarantee that the asphalt concrete mix made from these products will perform in the field. The end user of asphalt binders should assess the suitability of the binder to meet the performance requirements of the projects on which they will be used.
Table 1 — Performance graded asphalt binder specification

<table>
<thead>
<tr>
<th>Property</th>
<th>Performance grade designation</th>
<th>Test Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PG 46</td>
<td>PG 52</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>Average 7-day maximum Pavement Design Temperature, °C</td>
<td>&lt;46</td>
<td>&lt;52</td>
</tr>
<tr>
<td>Minimum Pavement Design Temperature, °C</td>
<td>-34</td>
<td>-40</td>
</tr>
<tr>
<td>Flash Point Temp. min °C</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Viscosity, max 3 Pa.s</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Dynamic Shear, G*/sinδ, min. 1.00 kPa 25 mm Plate, 1 mm Gap Test Temp. at 10 rad/s, °C</td>
<td>46</td>
<td>52</td>
</tr>
<tr>
<td>Mass Change, max. percent</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Dynamic Shear, D7175: G*sinδ, min. 2.00 kPa 25 mm Plate, 1 mm Gap Test Temp. at 10 rad/s, °C</td>
<td>46</td>
<td>52</td>
</tr>
<tr>
<td>Deep Stiffness, E, max 5000 MPa, sec-value, min. 0.300 Test Temp at 60 s, °C</td>
<td>-24</td>
<td>-30</td>
</tr>
<tr>
<td>Direct Tension, Failure Strain, min. 1.0 % Test Temp. at 1.0 mm/min., °C</td>
<td>-24</td>
<td>-30</td>
</tr>
</tbody>
</table>

©EAC 2019 – All rights reserved
NOTE 3

A. Pavement temperatures are estimated from air temperatures using an algorithm contained in the LTPP Bind software program, or are provided by the specifying agency.

B. The referee method shall be ASTM D4402 using a #21 spindle at 20RPM, however alternate methods may be used for routine testing and quality assurance. If the binder is too stiff to test with the No. 21 Spindle, the No. 27 spindle shall be used. The spindle size and shear rate shall be reported. This requirement may be waived at the discretion of the specifying agency if the supplier warrants that the asphalt binder can be adequately pumped and mixed at temperatures that meet all applicable safety standards.

C. For quality control of unmodified asphalt cement production, measurement of the viscosity of the original asphalt cement may be substituted for dynamic shear measurements of $G^*/\sin\delta$ at test temperatures where the asphalt is a Newtonian fluid. Any suitable standard means of viscosity measurement may be used, including capillary viscometry (Test Methods ASTM D2170 or ASTM D2171) or rotational viscometry.

D. The PAV aging temperature is based on simulated climatic conditions and is one of three temperatures 90 °C, 100 °C or 110 °C. Normally the PAV aging temperature is 100 °C for PG 58–xx and above. However, in desert climates, the PAV aging temperature for PG 70–xx and above may be specified as 110 °C.

E. If the creep stiffness is below 300 MPa, the direct tension test is not required. If the creep stiffness is between 300 and 600 MPa the direct tension failure strain requirement can be used in lieu of the creep stiffness requirement. The m-value requirement must be satisfied in both cases. If the creep stiffness and m-value data are unobtainable because the binder is too soft at the test temperature, the asphalt binder will be deemed to pass at that grade temperature if it meets the critical low cracking temperature requirements at the test temperature minus 6 °C.
Table 2 — Performance graded asphalt binder specification

<table>
<thead>
<tr>
<th>Property</th>
<th>PG 46</th>
<th>PG 52</th>
<th>PG 58</th>
<th>PG 64</th>
<th>PG 70</th>
<th>PG 76</th>
<th>PG 82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance grade designation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average 7-day maximum</td>
<td>-46</td>
<td>-52</td>
<td>-58</td>
<td>-64</td>
<td>-70</td>
<td>-76</td>
<td>-82</td>
</tr>
<tr>
<td>Pavement Design Temperature, °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Pavement Design Temperature, °C</td>
<td>-34</td>
<td>-40</td>
<td>-46</td>
<td>-10</td>
<td>-16</td>
<td>-22</td>
<td>-28</td>
</tr>
<tr>
<td>Viscosity, PPa, max. 3 PPa, Test Temp., °C</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Shear @, D*/sinδ, min. 1.00 kPa</td>
<td>46</td>
<td>52</td>
<td>58</td>
<td>70</td>
<td>76</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>Mass Change, max. percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Shear, D*/sinδ, min. 2.20 kPa</td>
<td>46</td>
<td>52</td>
<td></td>
<td>64</td>
<td>70</td>
<td>76</td>
<td>82</td>
</tr>
<tr>
<td>Pressure Aging Vessel Residue (Practice D6521)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAV Aging Temperature, °C</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>100 (110)</td>
<td>100 (110)</td>
<td>100 (110)</td>
</tr>
<tr>
<td>Dynamic Shear, D*/sinδ, max. 5000 kPa</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>25</td>
<td>22</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Critical Low Cracking, Temperature, PASS, Test Temp °C</td>
<td>-24</td>
<td>-30</td>
<td>-36</td>
<td>-50</td>
<td>-6</td>
<td>-12</td>
<td>-18</td>
</tr>
</tbody>
</table>

©EAC 2019 – All rights reserved
NOTE 4

A Pavement temperatures are estimated from air temperatures using an algorithm contained in the LTTP Bind software program, or are provided by the specifying agency.

B The referee method shall be ASTM D4402 using a #21 spindle at 20RPM, however alternate methods may be used for routine testing and quality assurance. If the binder is too stiff to test with the No. 21 Spindle, the No. 27 spindle shall be used. The spindle size and shear rate shall be reported. This requirement may be waived at the discretion of the specifying agency if the supplier warrants that the asphalt binder can be adequately pumped and mixed at temperatures that meet all applicable safety standards.

C For quality control of unmodified asphalt cement production, measurement of the viscosity of the original asphalt cement may be substituted for dynamic shear measurements of $G^\prime$/sinδ at test temperatures where the asphalt is a Newtonian fluid. Any suitable standard means of viscosity measurement may be used, including capillary viscometry (Test Methods ASTM D2170 or ASTM D2171) or rotational viscometry.

D The PAV aging temperature is based on simulated climatic conditions and is one of three temperatures 90 °C, 100 °C or 110 °C. Normally the PAV aging temperature is 100 °C for PG 58–xx and above. However, in desert climates, the PAV aging temperature for PG 70–xx and above may be specified as 110 °C.

E For verification of grade, at a minimum perform ASTM D6648 at the test temperature and at the test temperature minus 6°C, and ASTM D6723 at the test temperature. Testing at additional temperatures for D6648 may be necessary if 300 MPa is not bracketed at the initial two test temperatures. Compare the failure stress from ASTM D6723 to the calculated induced thermal stress as per ASTM D6816. If the failure stress exceeds the induced thermal stress, the asphalt binder is deemed a “PASS” at the specification temperature. If the creep stiffness and m-value data are unobtainable because the binder is too soft at the test temperature, the asphalt binder will be deemed to pass at that grade temperature if it meets the critical low cracking temperature requirements at the test temperature minus 6°C.

5 Sampling

The material shall be sampled in accordance with the practice ASTM D140.

6 Test methods

The properties outlined in 4.2.3, 4.2.4 and 4.2.5 shall be determined in accordance with test Methods ASTM D92, ASTM D95, ASTM D2042, ASTM D2872, ASTM D4402, ASTM D5546, Practice ASTM D6521, Test Methods ASTM D6648 and ASTM D6723, Practice ASTM D6816, and Test Methods ASTM D7553 or ASTM D7175.

NOTE 5 — A number of relevant research studies have suggested that limits for the loss stiffness for the binder, $G^\prime$/sin δ, in the ASTM and AASHTO PG Binder Specification is, by itself, not a sufficient indicator of fatigue performance of an asphalt cement, or the asphalt concrete in asphalt pavement structures, or both.
NOTE 6 — Inspection and certification of the material shall be agreed upon between the purchaser and the supplier. Specific requirements shall be made part of the purchase contract. The supplier shall provide material handling and storage procedures for each asphalt binder grade certified.

NOTE 7 — If the results of any test do not conform to the requirements of this specification, retesting to determine conformity is performed as indicated in the purchase order or as otherwise agreed upon between the purchaser and the seller.